Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Scientists Identify Most Lethal Known Species of Prion Protein

10.02.2012
Findings Suggest New View of ¡°Mad Cow¡± and Other Neurodegenerative Diseases

Scientists from the Florida campus of The Scripps Research Institute have identified a single prion protein that causes neuronal death similar to that seen in ¡°mad cow¡± disease, but is at least 10 times more lethal than larger prion species.

This toxic single molecule or ¡°monomer¡± challenges the prevailing concept that neuronal damage is linked to the toxicity of prion protein aggregates called ¡°oligomers.¡±

The study was published this week in an advance, online edition of the journal Proceedings of the National Academy of Sciences.

¡°By identifying a single molecule as the most toxic species of prion proteins, we¡¯ve opened a new chapter in understanding how prion-induced neurodegeneration occurs,¡± said Scripps Florida Professor Corinne Lasm¨¦zas, who led the new study. ¡°We didn¡¯t think we would find neuronal death from this toxic monomer so close to what normally happens in the disease state. Now we have a powerful tool to explore the mechanisms of neurodegeneration.¡±

In the study, the newly identified toxic form of abnormal prion protein, known as TPrP, caused several forms of neuronal damage ranging from apoptosis (programmed cell death) to autophagy, the self-eating of cellular components, as well as molecular signatures remarkably similar to that observed in the brains of prion-infected animals. The study found the most toxic form of prion protein was a specific structure known as alpha-helical.

New Paths to Explore

In addition to the insights it offers into prion diseases such as ¡°mad cow¡± and a rare human form Creutzfeldt-Jakob disease, the study opens the possibility that similar neurotoxic proteins might be involved in neurodegenerative disorders such as Alzheimer¡¯s and Parkinson diseases.

In prion disease, infectious prions (short for proteinaceous infectious particles), thought to be composed solely of protein, have the ability to reproduce, despite the fact that they lack DNA and RNA. Mammalian cells normally produce what is known as cellular prion protein or PrP; during infection with a prion disease, the abnormal or misfolded protein converts the normal host prion protein into its disease form.
Lasm¨¦zas explains that prion diseases are similar to Alzheimer's and other protein misfolding diseases in that they are caused by the toxicity of a misfolded host protein. Recent work, as reported in The New York Times, also found that diseases such as Alzheimer's resemble prion diseases by spreading from cell to cell.

The new study adds another twist. ¡°Until now, it was thought that oligomers of proteins are toxic in all these diseases,¡± Lasm¨¦zas said. ¡°Since we found for the first time that an abnormally folded monomer is highly toxic, it opens up the possibility that this might be true also for some other protein misfolding diseases as well.¡±

The first author of the study, ¡°Highly Neurotoxic Monomeric ¦Á-Helical Prion Protein,¡± is Minghai Zhou of Scripps Research. Other authors include Gregory Ottenberg and Gian Franco Sferrazza also of Scripps Research. For more information on the study, see http://www.pnas.org/content/early/2012/02/07/1118090109.abstract

The study was supported by the State of Florida.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation. For more information, see www.scripps.edu.
For information:
Eric Sauter
Tel: 215-862-2689
erics165@comcast.net

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Synthetic nanoparticles achieve the complexity of protein molecules
24.01.2017 | Carnegie Mellon University

nachricht Immune Defense Without Collateral Damage
24.01.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Arctic melt ponds form when meltwater clogs ice pores

24.01.2017 | Earth Sciences

Synthetic nanoparticles achieve the complexity of protein molecules

24.01.2017 | Life Sciences

PPPL physicist uncovers clues to mechanism behind magnetic reconnection

24.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>