Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists find way to block stress-related cell death

03.06.2011
Discovery could provide new target for drug development against conditions including heart attack, stroke and Parkinson's disease

Scientists from the Florida campus of The Scripps Research Institute have uncovered a potentially important new therapeutic target that could prevent stress-related cell death, a characteristic of neurodegenerative diseases such as Parkinson's, as well as heart attack and stroke.

In the study, published recently in the journal ACS Chemical Biology, the scientists showed they could disrupt a specific interaction of a critical enzyme that would prevent cell death without harming other important enzyme functions.

The enzyme in question is c-jun-N-terminal kinase (JNK), pronounced "junk," which has been implicated in many processes in the body's response to stresses, such as oxidative stress, protein misfolding, and metabolic disorder. JNK also plays an important role in nerve cell survival and has become a target for drugs to treat neurodegenerative disorders such as Parkinson's disease.

In recent studies, JNK has been found to migrate to the mitochondria—the part of the cell that generates chemical energy and that is involved in cell growth and death. That migration, coupled with JNK activation, is associated with a number of serious health issues, including apoptosis or programmed cell death, liver damage, neuronal cell death, stroke and heart attack.

"Activated JNK migrates to the mitochondria in reaction to a stress signal," said Philip LoGrasso, professor in the Department of Molecular Therapeutics and senior director for drug discovery at Scripps Florida who led the study. "Once there, it amplifies the effects of reactive oxygen species that cause significant damage to the cell. We developed a small peptide that intervenes in JNK migration and blocks those harmful effects—specifically cell death."

LoGrasso noted that the team was able to block JNK mitochondrial interaction without harming any other important enzyme processes, such as JNK's impact on gene expression. These findings, LoGrasso said, suggest that this interaction could be exploited in the development of a new drug.

"The peptide we developed will never be a drug, but it is an important new investigative tool that we can use to selectively probe mitochondrial biology," he said. "Our hope is to produce a small molecule that can mimic the inhibitory effect of this peptide. If we can do that, we might be able to selectively inhibit JNK mitochondrial interaction and use it to treat a number of diseases."

The first author of the study, "Selective Inhibition of Mitochondrial JNK Signaling Achieved Using Peptide Mimicry of the Sab Kinase Interacting Motif-1 (KIM1)," is Jeremy W. Chambers of Scripps Research. Other authors include Lisa Cherry, John D. Laughlin, and Mariana Figuera-Losada, also of Scripps Research. For more information, see http://pubs.acs.org/doi/abs/10.1021/cb200062a .

The study was supported by National Institutes of Health and the Saul and Theresa Esman Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>