Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists elevate little-studied cellular mechanism to potential drug target

12.12.2011
For years, science has generally considered the phosphorylation of proteins -- the insertion of a phosphorous group into a protein that turns it on or off -- as perhaps the factor regulating a range of cellular processes from cell metabolism to programmed cell death.

Now, scientists from the Florida campus of The Scripps Research Institute have identified the importance of a novel protein-regulating mechanism -- called sulfenylation -- that is similar to phosphorylation and may, in fact, open up opportunities to develop new types of drugs for diseases such as cancer.

The study was published December 11, 2011, in an advance online edition of the journal Nature Chemical Biology.

"With this paper, we've elevated protein sulfenylation from a marker of oxidative stress to a bona fide reversible post translational modification that plays a key regulatory role during cell signaling," said Kate Carroll, a Scripps Research associate professor who led the study. "The sulfenyl modification is the new kid on the block."

During periods of cellular stress, caused by factors such as exposure to UV radiation or chronic disease states like cancer, the level of highly reactive oxygen-containing molecules can increase, resulting in inappropriate modification of proteins and cell damage. In sulfenylation, one oxidant, hydrogen peroxide, functions as a messenger that can activate cell proliferation through oxidation of cysteine residues in signaling proteins, producing sulfenic acid. Cysteine, an amino acid (natural protein building block), is highly oxidant sensitive.

Conventional wisdom has long held that if hydrogen peroxide does exist in the cell at any appreciable level, it represents a disease state, not a regulatory event. The new study shows that sulfenylation is actually a positive protein modification, and that it's required for signaling through the pathway, a validation of a long-held belief in some scientific circles that hydrogen peroxide functions as a general signaling molecule, not an oxidative "bad boy" to be eliminated at all costs.

A New Chemical Probe

To explore the process, Carroll and her colleagues developed a highly selective chemical probe -- known as DYn-2 -- with the ability to detect minute differences in sulfenylation rates within the cell.

With the new probe, the team was able to show that a key signaling protein, epidermal growth factor receptor (EGFR), is directly modified by hydrogen peroxide at a critical active site cysteine, stimulating its tyrosine kinase activity.

The technology described in the new paper is unique, Carroll said, because it allows scientists to trap and detect these modifications in situ, without interfering with the redox balance of the cell. "Probing cysteine oxidation in a cell lysate is like looking for a needle in a haystack," she said, "our new approach preserves labile sulfenyl modifications and avoids protein oxidation artifacts that arise during cell homogenization."

As with phosphorylation, future studies on sulfenylation will delve into the exciting discovery of new enzymes, new signaling processes, and new mechanisms of regulation.

Another broad impact of these findings, Carroll said, is to open up an entirely new mechanism to exploit for the development of therapeutics, particularly in cancer. "It should influence the design of inhibitors that target oxidant-sensitive cysteine residues in the future," she said.

The first author of the study, "Peroxide-dependent Sulfenylation of the EGFR Catalytic Site Enhances Kinase Activity," is Candice E. Paulsen of the University of Michigan. Other authors include Thu H. Truong and Stephen E. Leonard of the University of Michigan; and Francisco J. Garcia, Arne Homann and Vinayak Gupta of Scripps Research.

The study was supported by the Camille Henry Dreyfus Teacher Scholar Award and the American Heart Association.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neuroscience, and vaccine development, as well as for its insights into autoimmune, cardiovascular, and infectious disease. Headquartered in La Jolla, California, the institute also includes a campus in Jupiter, Florida, where scientists focus on drug discovery and technology development in addition to basic biomedical science. Scripps Research currently employs about 3,000 scientists, staff, postdoctoral fellows, and graduate students on its two campuses. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, is ranked among the top ten such programs in the nation.

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>