Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists create new way to screen libraries of 10 million or more compounds

02.02.2010
The search for new drug compounds is probably worse than looking for a needle in a haystack because scientists are limited in the size of the haystacks they can rummage through—time and money make it virtually impossible to screen or search through super-large libraries of potential compounds.

This is a serious problem, because there is enormous interest in identifying synthetic molecules that bind to proteins for applications in drug discovery, biology, and proteomics, and larger libraries should mean higher odds of success.

But large libraries come with large problems. Because even compounds with only modest affinity (binding to the target protein receptor with less force than those with high affinity) are usually marked as hits, researchers often end up with several hundred of them and, because of practical constraints involving time and money, no easy way to determine which might be the highest affinity or best compound to serve as a starting point to design a drug. These limitations and others have drastically blunted the use of very large libraries—monster libraries—in binding assays.

Now, in research published in the most recent issue of the journal Chemistry & Biology, Tom Kodadek, a professor at The Scripps Research Institute's Florida campus, and his colleagues at Scripps Florida and the University of Texas Southwestern Medical Center have devised an innovative new way to solve this longstanding problem.

"Current methods severely limit the size of the libraries you can screen," said Kodadek. "If you get 20 hits out of a 100,000 compound library, it's feasible to re-synthesize each of those hits to test which are the most effective. But what if you want to screen 10 million compounds? It takes an impossible amount of time to re-synthesize promising compounds for further study. To find the most potent ligands, our new method stands head and shoulders over what is available to researchers today."

Ligands are compounds that attach to proteins and alter their expression, potentially affecting a particular biomolecular activity, say, a protein pathway involved in a disease.

The new method displays millions of compounds on the surface of resin-based beads, each type of compound on a different bead. The hits are culled from the beads using a unique magnetic signature and then transferred to a microarray format—glass slides or silicon chips that can hold large numbers of compounds on their surface. The microarray format allows quantitative comparison of binding affinity that can be carried out without the need for tedious re-synthesis of many different compounds.

In the study, the team used mixed peptide/peptoid libraries—peptides make up proteins; peptoids are molecules closely related to, but more stable than peptides, making them more convenient for testing—but the method could be applied to any class of compound, according to Kodadek.

Changing the Paradigm

The Kodadek group's method combines several different technical advances to enable this convenient and efficient screening.

These days, most active molecules are discovered through screening of two basic types. There are functional screens, in which small molecules are introduced into the wells of microtiter plates—flat plates with multiple wells that can reach as high as 9,600—and tested individually for their ability to alter the activity of an enzyme. Alternatively, there are binding assays, an approach first developed for bead-displayed peptide libraries, where each bead displays many copies of a single molecule.

"Our new method for screening synthetic libraries and characterizing the resultant hits combines many of the features of bead library screening and microarray-based analysis in a seamless fashion," Kodadek said. "The new technique uses several million beads, each of which displays a unique ligand—theoretically as many as 64 million compounds. The target protein has an antibody attached to it that is covered with iron oxide particles—magnetic dust. If the peptoid ligand is a legitimate ligand, and attaches to the protein, we can pull it from the mass by using a magnetized centrifuge."

The selected compounds are then removed from the beads through a unique cleaving process and attached to glass microarray slides. These arrays are mixed with different concentrations of the target protein, allowing the affinity strength of each compound on the array to be determined quickly and efficiently.

"This technology is relevant to custom libraries that are produced on beads," Kodadek said. "Right now, that probably constitutes five percent of screening going on. My guess, however, is that ratio will change once researchers begin to adopt this new method."

Adoption of this new technique will take time and something of a paradigm shift, Kodadek notes. The new screening technology monitors binding of the bead-immobilized molecule to the target protein; currently, the most widely used high-throughput screens monitor function of the compound. In addition, not all laboratories currently have the equipment and expertise necessary to make microarrays of small molecules.

"I think our method can revolutionize medicinal chemistry," said Kodadek, "but this is only the first step."

The first author of the study, "Seamless Bead to Microarray Screening: Rapid Identification of the Highest Affinity Protein Ligands from Large Combinatorial Libraries," is John M. Astle of the University of Texas. In addition to Kodadek, other authors include Levi S. Simpson and Steven Connell of the University of Texas Southwestern Medical Center; and Yong Huang, M. Muralidhar Reddy, Rosemary Wilson, and Johnnie Wilson of The Scripps Research Institute. See http://www.cell.com/chemistry-biology/abstract/S1074-5521(10)00005-0

The study was supported by the National Institutes of Health Director's Pioneer Award.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Studying a catalyst for blood cancers
25.04.2017 | University of Miami Miller School of Medicine

nachricht Atomic-level motion may drive bacteria's ability to evade immune system defenses
24.04.2017 | Indiana University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>