Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists break barrier to creating potential therapeutic molecules

25.05.2010
New technique could help accelerate study and identification of new drugs

Scientists from The Scripps Research Institute have created a novel technique that for the first time will allow the efficient production of a molecular structure that is common to a vast array of natural molecules. This advance provides a means to explore the potential of this molecular substructure in the search for new therapies.

The study was published on May 23, 2010 in an advance online edition of the journal Nature Chemistry.

The structures in question, called "skipped polyenes," are shared by a large class of molecules that play a critical role in human health, including polyunsaturated fatty acids, which are vital to blood pressure regulation, inflammation, and immune response. The structures are also shared by a number of potent antibiotic, antifungal, and cytotoxic (toxic to living cells) compounds.

Simple and efficient methods for the preparation of skipped polyenes have generally been lacking, creating a significant barrier to exploring their potential as drugs. Currently, the production of molecules that contain simple variants of this substructure is quite labor intensive.

"Our study identifies a novel chemical reaction that will enable the accelerated production of this type of structural motif," said Associate Professor Glenn Micalizio, who authored the new study with a member of his Scripps Florida lab, Research Associate Todd K. Macklin. "This new reaction provides a means to explore the medicinal potential of molecules bearing complex skipped polyenes – something that we simply haven't been able to do until now."

Chemical Short Cuts

In essence, the new chemical method provides a means to replace long, step-by-step sequences of reactions that would have otherwise been required to prepare skipped polyenes. The new chemical process defines a fundamentally novel pathway (a new carbon-carbon bond forming process) to these complex structures that proceeds in just a fraction of the number of chemical steps previously required.

As such, the new method not only saves time, but greatly increases efficiency for the production of molecules that house the skipped polyene core. In chemistry, each of the steps (or reactions) used to prepare a complex structure typically proceeds with less than 100 percent efficiency, notes Micalizio—maybe 80 to 90 percent of the initial material can successfully be advanced to the next chemical step. As a result, the requirement of long sequences of reactions, where yields per step are compounded mathematically through the sequence, typically result in poor overall efficiency.

"If one can invent reactions that decrease the length of sequences required to prepare complex structures, great enhancements of efficiency can result," said Micalizio. "A central focus of our laboratory is designing new chemical reactions that do just that. Since 2005, we have been advancing a large class of chemical transformations that can be seen as 'chemical short cuts' – so that ultimately scientists can better explore the therapeutic potential of molecules inspired by the vast and diverse structures that we see in nature."

The new technique described in the Nature Chemistry paper proceeds by bond formation between two specific classes of molecules, vinylcyclopropanes and alkynes (or vinylsilanes), using a metal-promoted cross-coupling reaction to assemble the key structural motif.

"That initial metal-promoted coupling leads to a very unstable intermediate molecule," Micalizio said. "Actually, the chemical intermediate spontaneously rearranges to stabilize the structure, through a process that establishes all of the complex architecture of the skipped polyene product."

The research for the paper, "Convergent and Stereospecific Synthesis of Complex Skipped Polyenes and Polyunsaturated Fatty Acids," was supported by the American Cancer Society, the Arnold and Mabel Beckman Foundation, Boehringer Ingelheim, Eli Lilly & Co., and the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

For information:
Keith McKeown
858-784-8134
kmckeown@scripps.edu

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: CHEMISTRY Nature Immunology Scripps chemical reaction fatty acid living cell

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>