Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research scientists break barrier to creating potential therapeutic molecules

25.05.2010
New technique could help accelerate study and identification of new drugs

Scientists from The Scripps Research Institute have created a novel technique that for the first time will allow the efficient production of a molecular structure that is common to a vast array of natural molecules. This advance provides a means to explore the potential of this molecular substructure in the search for new therapies.

The study was published on May 23, 2010 in an advance online edition of the journal Nature Chemistry.

The structures in question, called "skipped polyenes," are shared by a large class of molecules that play a critical role in human health, including polyunsaturated fatty acids, which are vital to blood pressure regulation, inflammation, and immune response. The structures are also shared by a number of potent antibiotic, antifungal, and cytotoxic (toxic to living cells) compounds.

Simple and efficient methods for the preparation of skipped polyenes have generally been lacking, creating a significant barrier to exploring their potential as drugs. Currently, the production of molecules that contain simple variants of this substructure is quite labor intensive.

"Our study identifies a novel chemical reaction that will enable the accelerated production of this type of structural motif," said Associate Professor Glenn Micalizio, who authored the new study with a member of his Scripps Florida lab, Research Associate Todd K. Macklin. "This new reaction provides a means to explore the medicinal potential of molecules bearing complex skipped polyenes – something that we simply haven't been able to do until now."

Chemical Short Cuts

In essence, the new chemical method provides a means to replace long, step-by-step sequences of reactions that would have otherwise been required to prepare skipped polyenes. The new chemical process defines a fundamentally novel pathway (a new carbon-carbon bond forming process) to these complex structures that proceeds in just a fraction of the number of chemical steps previously required.

As such, the new method not only saves time, but greatly increases efficiency for the production of molecules that house the skipped polyene core. In chemistry, each of the steps (or reactions) used to prepare a complex structure typically proceeds with less than 100 percent efficiency, notes Micalizio—maybe 80 to 90 percent of the initial material can successfully be advanced to the next chemical step. As a result, the requirement of long sequences of reactions, where yields per step are compounded mathematically through the sequence, typically result in poor overall efficiency.

"If one can invent reactions that decrease the length of sequences required to prepare complex structures, great enhancements of efficiency can result," said Micalizio. "A central focus of our laboratory is designing new chemical reactions that do just that. Since 2005, we have been advancing a large class of chemical transformations that can be seen as 'chemical short cuts' – so that ultimately scientists can better explore the therapeutic potential of molecules inspired by the vast and diverse structures that we see in nature."

The new technique described in the Nature Chemistry paper proceeds by bond formation between two specific classes of molecules, vinylcyclopropanes and alkynes (or vinylsilanes), using a metal-promoted cross-coupling reaction to assemble the key structural motif.

"That initial metal-promoted coupling leads to a very unstable intermediate molecule," Micalizio said. "Actually, the chemical intermediate spontaneously rearranges to stabilize the structure, through a process that establishes all of the complex architecture of the skipped polyene product."

The research for the paper, "Convergent and Stereospecific Synthesis of Complex Skipped Polyenes and Polyunsaturated Fatty Acids," was supported by the American Cancer Society, the Arnold and Mabel Beckman Foundation, Boehringer Ingelheim, Eli Lilly & Co., and the National Institutes of Health.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development. Scripps Florida is located in Jupiter, Florida.

For information:
Keith McKeown
858-784-8134
kmckeown@scripps.edu

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: CHEMISTRY Nature Immunology Scripps chemical reaction fatty acid living cell

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>