Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps research scientists 'watch' as individual alpha-synuclein proteins change shape

19.03.2009
Dance by protein linked to Parkinson's and Alzheimer's diseases reveals unprecedented twists and turns

In an Early Edition publication of The Proceedings of the National Academy of Sciences (PNAS) this week, the researchers demonstrate the "alpha-synuclein dance" – the switching back and forth of the protein between a bent helix and an extended helix as the surface that it is binding to changes.

Such shape shifting has rarely been so directly observed in proteins like alpha-synuclein, which are known to be unfolded in isolation, says the study's senior investigator Ashok Deniz, an associate professor at The Scripps Research Institute.

"We are intrigued to see such complex behavior," he says. "It is interesting that with just a single binding partner, the protein can undergo so many dramatic shape transitions, and that the whole process is reversible."

In the past, scientists believed that proteins, as directed by their genes, fold themselves into defined three-dimensional structures that dictate their function. But more recently, a class of proteins known as "intrinsically disordered proteins" have been identified, which are functional, despite the fact that they are often unfolded.

Alpha-synuclein is such a protein. Mutations in the gene that produces alpha-synuclein have been linked to early-onset Parkinson's disease, and in sporadic, common Parkinson's disease, the protein can accumulate into so-called Lewy bodies inside nerve cells. The protein is also found in the amyloid plaques in Alzheimer's disease, and in other forms of neurological disease.

To learn more about alpha-synuclein, the Scripps Research team decided to study the shape of single proteins. To do this, they used a technique they helped develop, which is known as single-molecule fluorescence resonance energy transfer (FRET), to look at how the protein folds when it binds to different molecules. This technique, which Deniz calls a "molecular ruler," measures light emitted from fluorescent dyes that are attached to amino acids in the protein. The measured light provides information about molecular distances, hence revealing the protein's shape. By observing shapes of individual proteins rather than averaging data over a large number of them, the team was able to better map and resolve shape complexity in the system.

To coax the protein to change shapes, the researchers increased the concentration of a soapy solution that mimics the lipids found in different nerve cell membranes in the brain. Alpha-synuclein is known to bind to membranes on nerve cells, and lipids are a large component of those membranes.

At a low concentration, the "lipid" molecules remained separate but at higher concentration, small and then larger blobs of molecules form. The shape of the alpha-synuclein kept pace – the extended helix could latch onto lipid-mimics as monomers or in a large cylinder-shaped blob, whereas the bent helix wrapped itself around smaller lipid-mimic balls or could create formations with lipid-mimic monomers.

"Others have found the protein to be in a bent helix or in an extended helix, but what we are showing here directly is that the shape can actively change," Deniz says. "It starts off in an unfolded state, and as we increase the concentration of the lipid mimics, the protein reacts to what is in effect a different binding partner, even though it is the same small molecule at different concentrations. It switches back and forth into different states.

"This is perhaps the most complex protein folding-binding system that has been studied to date using single-molecule FRET," he says.

This ability of alpha-synuclein to be switched into alternative shapes could play a significant role in regulating formation of disease-related aggregates, as well as enabling its function. Hence, one next step for the research team is to figure out which form of alpha-synuclein may accelerate formation of the types of protein aggregates found in Alzheimer's disease plaque and in Parkinson's disease Lewy bodies. Using single-molecule methods to directly construct binding-folding maps (as in the current work) will be a critical component of this future effort, and also should be widely applicable to other intrinsically disordered or amyloid-forming proteins.

Co-authors of the paper, "Interplay of á-synuclein binding and conformational switching probed by single molecule fluorescence," include first authors Allan Chris M. Ferreon and Yann Gambin, and Edward A. Lemke – all of The Scripps Research Institute.

This work was supported by a grant from the National Institute of General Medical Sciences, National Institutes of Health (NIH), and postdoctoral fellowships from the NIH National Institute of Neurological Disorders and Stroke, the La Jolla Interfaces in Science (funded by the Burroughs Wellcome Fund), and the Alexander von Humboldt Foundation.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, non-profit biomedical research organizations, at the forefront of basic biomedical science that seeks to comprehend the most fundamental processes of life. Scripps Research is internationally recognized for its discoveries in immunology, molecular and cellular biology, chemistry, neurosciences, autoimmune, cardiovascular, and infectious diseases, and synthetic vaccine development. Established in its current configuration in 1961, it employs approximately 3,000 scientists, postdoctoral fellows, scientific and other technicians, doctoral degree graduate students, and administrative and technical support personnel. Scripps Research is headquartered in La Jolla, California. It also includes Scripps Florida, whose researchers focus on basic biomedical science, drug discovery, and technology development.

Keith McKeown | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>