Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps Research Institute study finds new moves in protein's evolution

Findings point to new approach to drug design

Highlighting an important but unexplored area of evolution, scientists at The Scripps Research Institute (TSRI) have found evidence that, over hundreds of millions of years, an essential protein has evolved chiefly by changing how it moves, rather than by changing its basic molecular structure.

The work has implications not only for the understanding of protein evolution, but also for the design of antibiotics and other drugs that target the protein in question.

"Proteins are machines that have structures and motions," said TSRI Professor Peter E. Wright, who is the Cecil H. and Ida M. Green Investigator in Biomedical Research and a member of TSRI's Skaggs Institute for Chemical Biology. "While we've known that proteins evolve via structural change, we haven't really known until now that they also evolve via changes in their dynamics."

The new study, which appears in Nature Structural and Molecular Biology on September 29, 2013, focuses on the enzyme dihydrofolate reductase (DHFR), which is so important for synthesis of DNA that it is found in almost all living organisms. DHFR is also a frequent target of medicines, including antibiotic, anticancer and antimalarial drugs.

Family Lineage

Wright and his laboratory have been interested in learning more about DHFR so scientists can target it more effectively and better thwart the emergence of drug resistance. In a study published in 2011 in Science, Wright and his colleagues demonstrated that the dynamics of the DHFR enzyme in the common bacterium E. coli are crucial to its catalytic function.

For the new study, the researchers analyzed and compared the dynamics of the E. coli DHFR enzyme with those of human DHFR: despite eons of separate evolution, the human and bacterial enzymes retain very similar atomic-level structures.

The team used a variety of techniques to characterize the two versions of the enzyme, including X-ray crystallography and nuclear magnetic resonance, analyses of DHFR amino-acid sequences and evaluations of the enzyme's functionality in cells and in vitro under various conditions. They also examined DHFRs from other species in addition to bacteria and humans to get a better idea of the evolutionary paths the enzyme took on its way to higher organisms.

"We didn't imagine, when we started, how different the dynamics would turn out to be and that there would be an evolutionary pattern of atomic-level dynamics in the enzyme family," said Gira Bhabha, who was first author of the study. Bhabha, a graduate student at TSRI during the study, is now a postdoctoral researcher at the University of California, San Francisco (UCSF).

E. coli DHFR uses relatively extended motions of flexible amino-acid loops in its active region to grip and release its binding partners. The human enzyme seems to move subtly and efficiently by comparison and essentially with a different mechanism. "The dominant motion in the human enzyme is a clam-shell-like movement with a twist, which allows opening and closing of its active site," said Bhabha.

Looking Back to Chart a Path Forward

Bhabha and Wright suspect that these strikingly different dynamics of the E. coli and human DHFRs evolved as adaptations to very different cellular environments. Indeed, the human DHFR appears to be so well tuned for working in human cells that—as the researchers found—it cannot work properly in E. coli cells. "It seems that the much higher concentration of product molecules in E. coli cells effectively shuts down the human version of the enzyme," Bhabha said.

Wright and his laboratory now plan further investigations of DHFR's dynamics and hope eventually to elucidate the sequence of mutations that occurred to differentiate DHFR in humans and other mammals from the evolutionarily older, bacterial forms of the enzyme.

That evolutionary history should help scientists understand how evolutionary changes in DHFR lead to drug resistance. Knowing how human DHFR differs in its dynamics from its counterparts in bacteria and other disease-causing organisms also should enable researchers to design anti-DHFR drugs that are more specific for the target enzyme and have fewer side effects.

Other contributors to the study, "Divergent evolution of protein conformational dynamics in dihydrofolate reductase," were Damian C. Ekiert, Madeleine Jennewein (who made substantial contributions to this research while working in the Wright lab as a high school and undergraduate intern), Gerard Kroon and Lisa M. Tuttle of TSRI (Ekiert and Tuttle, TSRI graduate students during the study, are now at UCSF and the Fred Hutchinson Cancer Research Center, respectively); Christian M. Zmasek and Adam Godzik of the Sanford-Burnham Medical Research Institute; TSRI Professor H. Jane Dyson, who co-supervised Bhabha's research; and TSRI Professor Ian A. Wilson.

The study was supported by funds from the National Institute of General Medical Sciences (GM75995 and U54GM094586), the Skaggs Institute of Chemical Biology at TSRI and the Damon Runyon Cancer Research Foundation.

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation.

Mika Ono | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>