Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps Research Institute Scientists Uncover New Details of Natural Anticancer Mechanism

Scientists at The Scripps Research Institute (TSRI) have identified key triggers of an important cancer-blocking mechanism in cells.
Termed “oncogene-induced senescence,” this mechanism can block most cancer types, and is commonly experienced when incipient skin cancers turn instead into slow-growing moles. Tumors that achieve malignancy often do so by defeating or circumventing this growth barrier—which is why scientists have been eager to find out precisely how it works.

“We have known about some of the molecular signals that mediate this senescence response, but we’ve needed to understand the signaling pathway in much more detail,” said Peiqing Sun, associate professor in TSRI’s Department of Cell and Molecular Biology.

In the new study, published recently by the journal Molecular Cell, Sun and his colleagues describe the cascading interactions of three enzymes that are necessary to initiate a common type of oncogene-induced senescence.

Looking for Binding Partners

Oncogenes are growth-related genes that, through DNA damage, inherited mutations or some other cause, push cells to keep dividing beyond normal limits. Oncogenes in the ras gene family are the ones that have been most commonly linked to human cancers—and most studied as triggers of senescence.

Sun and other researchers showed a decade ago that an enzyme called p38 sits near the top of the ras-induced senescence response cascade. In 2007, Sun and his colleagues reported that p38 plays a role in this cascade by activating another enzyme, PRAK, through the addition of a phosphor group, a modification known as phosphorylation. For the new study, Sun and first author Research Associate Hui Zheng, along with other members of the laboratory, sought more details of PRAK’s role in this cascade.

Zheng began the investigation by searching for binding partners of PRAK. With a series of protein-interaction assays he isolated an enzyme called Tip60, which binds tightly to PRAK. Further tests indicated that Tip60 does indeed lie within the senescence-inducing signaling cascade, because senescence fails to occur when Tip60 is absent.

PRAK is a kinase enzyme that, like p38, phosphorylates other proteins. Initially Zheng and Sun suspected that PRAK interacts with Tip60 by phosphorylating it, and thereby activating it.

Instead, the reverse turned out to be true: Tip60 acts on PRAK. Tip60 is a type of enzyme called an acetyltransferase, which modifies other proteins by adding acetyl groups. “Our tests showed that Tip60 binds to PRAK and acetylates it at a certain location, which helps activate PRAK,” said Zheng.

Thus, the key enzyme PRAK requires two signals: “First the phosphorylation by p38 and then the acetylation by Tip60 are required for fully activating PRAK in this senescence–induction cascade,” Zheng said.

Potential Cancer-Drug Strategy

What controls Tip60’s own activation in this cascade? None other than the master switch, p38. “As a first step, p38 phosphorylates both Tip60 and PRAK,” said Sun. Activated Tip60 then acetylates PRAK, completing PRAK’s activation.

Previously Sun and his laboratory have shown that PRAK, when activated, goes on to activate the key tumor-suppressor protein p53, which exerts more direct control over a cell’s growth machinery.

Sun and his team have been looking for ways to force the activation of the senescence response in cancer cells, as a potential cancer-drug strategy. “Finding these details of the early part of the signaling cascade helps us understand better what we need to target,” he said.

Other contributors to the study, “A Posttranslational Modification Cascade Involving p38, Tip60 and PRAK Mediates Oncogene-Induced Senescence,” were John Tat and Rong Liao of Sun’s laboratory, and Xuemei Han, Aaron Aslanian and John R. Yates III of the Yates lab at TSRI. For more information, see

The study was funded in part by the National Institutes of Health (grants CA106768 and CA131231).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136

Mika Ono | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>