Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute Scientists Uncover New Details of Natural Anticancer Mechanism

12.06.2013
Scientists at The Scripps Research Institute (TSRI) have identified key triggers of an important cancer-blocking mechanism in cells.
Termed “oncogene-induced senescence,” this mechanism can block most cancer types, and is commonly experienced when incipient skin cancers turn instead into slow-growing moles. Tumors that achieve malignancy often do so by defeating or circumventing this growth barrier—which is why scientists have been eager to find out precisely how it works.

“We have known about some of the molecular signals that mediate this senescence response, but we’ve needed to understand the signaling pathway in much more detail,” said Peiqing Sun, associate professor in TSRI’s Department of Cell and Molecular Biology.

In the new study, published recently by the journal Molecular Cell, Sun and his colleagues describe the cascading interactions of three enzymes that are necessary to initiate a common type of oncogene-induced senescence.

Looking for Binding Partners

Oncogenes are growth-related genes that, through DNA damage, inherited mutations or some other cause, push cells to keep dividing beyond normal limits. Oncogenes in the ras gene family are the ones that have been most commonly linked to human cancers—and most studied as triggers of senescence.

Sun and other researchers showed a decade ago that an enzyme called p38 sits near the top of the ras-induced senescence response cascade. In 2007, Sun and his colleagues reported that p38 plays a role in this cascade by activating another enzyme, PRAK, through the addition of a phosphor group, a modification known as phosphorylation. For the new study, Sun and first author Research Associate Hui Zheng, along with other members of the laboratory, sought more details of PRAK’s role in this cascade.

Zheng began the investigation by searching for binding partners of PRAK. With a series of protein-interaction assays he isolated an enzyme called Tip60, which binds tightly to PRAK. Further tests indicated that Tip60 does indeed lie within the senescence-inducing signaling cascade, because senescence fails to occur when Tip60 is absent.

PRAK is a kinase enzyme that, like p38, phosphorylates other proteins. Initially Zheng and Sun suspected that PRAK interacts with Tip60 by phosphorylating it, and thereby activating it.

Instead, the reverse turned out to be true: Tip60 acts on PRAK. Tip60 is a type of enzyme called an acetyltransferase, which modifies other proteins by adding acetyl groups. “Our tests showed that Tip60 binds to PRAK and acetylates it at a certain location, which helps activate PRAK,” said Zheng.

Thus, the key enzyme PRAK requires two signals: “First the phosphorylation by p38 and then the acetylation by Tip60 are required for fully activating PRAK in this senescence–induction cascade,” Zheng said.

Potential Cancer-Drug Strategy

What controls Tip60’s own activation in this cascade? None other than the master switch, p38. “As a first step, p38 phosphorylates both Tip60 and PRAK,” said Sun. Activated Tip60 then acetylates PRAK, completing PRAK’s activation.

Previously Sun and his laboratory have shown that PRAK, when activated, goes on to activate the key tumor-suppressor protein p53, which exerts more direct control over a cell’s growth machinery.

Sun and his team have been looking for ways to force the activation of the senescence response in cancer cells, as a potential cancer-drug strategy. “Finding these details of the early part of the signaling cascade helps us understand better what we need to target,” he said.

Other contributors to the study, “A Posttranslational Modification Cascade Involving p38, Tip60 and PRAK Mediates Oncogene-Induced Senescence,” were John Tat and Rong Liao of Sun’s laboratory, and Xuemei Han, Aaron Aslanian and John R. Yates III of the Yates lab at TSRI. For more information, see http://www.cell.com/molecular-cell/abstract/S1097-2765(13)00294-3

The study was funded in part by the National Institutes of Health (grants CA106768 and CA131231).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>