Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Research Institute Scientists Uncover New Details of Natural Anticancer Mechanism

12.06.2013
Scientists at The Scripps Research Institute (TSRI) have identified key triggers of an important cancer-blocking mechanism in cells.
Termed “oncogene-induced senescence,” this mechanism can block most cancer types, and is commonly experienced when incipient skin cancers turn instead into slow-growing moles. Tumors that achieve malignancy often do so by defeating or circumventing this growth barrier—which is why scientists have been eager to find out precisely how it works.

“We have known about some of the molecular signals that mediate this senescence response, but we’ve needed to understand the signaling pathway in much more detail,” said Peiqing Sun, associate professor in TSRI’s Department of Cell and Molecular Biology.

In the new study, published recently by the journal Molecular Cell, Sun and his colleagues describe the cascading interactions of three enzymes that are necessary to initiate a common type of oncogene-induced senescence.

Looking for Binding Partners

Oncogenes are growth-related genes that, through DNA damage, inherited mutations or some other cause, push cells to keep dividing beyond normal limits. Oncogenes in the ras gene family are the ones that have been most commonly linked to human cancers—and most studied as triggers of senescence.

Sun and other researchers showed a decade ago that an enzyme called p38 sits near the top of the ras-induced senescence response cascade. In 2007, Sun and his colleagues reported that p38 plays a role in this cascade by activating another enzyme, PRAK, through the addition of a phosphor group, a modification known as phosphorylation. For the new study, Sun and first author Research Associate Hui Zheng, along with other members of the laboratory, sought more details of PRAK’s role in this cascade.

Zheng began the investigation by searching for binding partners of PRAK. With a series of protein-interaction assays he isolated an enzyme called Tip60, which binds tightly to PRAK. Further tests indicated that Tip60 does indeed lie within the senescence-inducing signaling cascade, because senescence fails to occur when Tip60 is absent.

PRAK is a kinase enzyme that, like p38, phosphorylates other proteins. Initially Zheng and Sun suspected that PRAK interacts with Tip60 by phosphorylating it, and thereby activating it.

Instead, the reverse turned out to be true: Tip60 acts on PRAK. Tip60 is a type of enzyme called an acetyltransferase, which modifies other proteins by adding acetyl groups. “Our tests showed that Tip60 binds to PRAK and acetylates it at a certain location, which helps activate PRAK,” said Zheng.

Thus, the key enzyme PRAK requires two signals: “First the phosphorylation by p38 and then the acetylation by Tip60 are required for fully activating PRAK in this senescence–induction cascade,” Zheng said.

Potential Cancer-Drug Strategy

What controls Tip60’s own activation in this cascade? None other than the master switch, p38. “As a first step, p38 phosphorylates both Tip60 and PRAK,” said Sun. Activated Tip60 then acetylates PRAK, completing PRAK’s activation.

Previously Sun and his laboratory have shown that PRAK, when activated, goes on to activate the key tumor-suppressor protein p53, which exerts more direct control over a cell’s growth machinery.

Sun and his team have been looking for ways to force the activation of the senescence response in cancer cells, as a potential cancer-drug strategy. “Finding these details of the early part of the signaling cascade helps us understand better what we need to target,” he said.

Other contributors to the study, “A Posttranslational Modification Cascade Involving p38, Tip60 and PRAK Mediates Oncogene-Induced Senescence,” were John Tat and Rong Liao of Sun’s laboratory, and Xuemei Han, Aaron Aslanian and John R. Yates III of the Yates lab at TSRI. For more information, see http://www.cell.com/molecular-cell/abstract/S1097-2765(13)00294-3

The study was funded in part by the National Institutes of Health (grants CA106768 and CA131231).

About The Scripps Research Institute

The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>