Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps Research Institute Scientists Report Breakthrough in DNA Editing Technology

Scientists at The Scripps Research Institute (TSRI) have found a way to apply a powerful new DNA-editing technology more broadly than ever before.

“This is one of the hottest tools in biology, and we’ve now found a way to target it to any DNA sequence,” said Carlos F. Barbas III, the Janet and Keith Kellogg II Chair in Molecular Biology and Professor in the Department of Chemistry at TSRI.

The breakthrough concerns a set of designer DNA-binding proteins called TALEs, which biologists increasingly use to turn on, turn off, delete, insert or even rewrite specific genes within cells—for scientific experiments and also for potential biotech and medical applications, including treatments for genetic diseases.

TALE-based methods had been considered useful against only a fraction of the possible DNA sequences found in animals and plants, but the new finding removes that limitation.

Barbas and his team report their finding on August 26, 2013 in an advance online edition of the journal Nucleic Acids Research.

Useful Tools

Molecular biologists have long dreamed of being able to manipulate DNA in living cells with ease and precision, and by now that dream is nearly a reality. TALE-based designer proteins, introduced just a few years ago, are arguably the most user-friendly and precise DNA-directed tools that have yet been invented.

Designer TALEs (transcription-activator-like effectors) are based on natural TALE proteins that are produced by some plant-infecting bacteria. These natural TALEs help bacteria subvert their plant hosts by binding to specific sites on plant DNA and boosting the activity of certain genes—thereby enhancing the growth and survival of the invading bacteria.

Scientists have found that they can easily engineer the DNA-grabbing segment of TALE proteins to bind precisely to a DNA sequence of interest. Typically they join that DNA-binding segment to another protein segment that can perform some desired function at the site of interest—for example, an enzyme fragment that cuts through DNA. Collectively the Barbas laboratory and others in this field have already engineered thousands of these powerful TALE-based DNA-editing proteins.

However, TALE-based DNA-editing has been seen to have a significant limitation. Virtually all the natural TALE proteins that have been discovered so far target sequences of DNA whose transcription begins with the nucleoside thymidine—the letter “T” in the four-letter DNA code. Structural studies have hinted that natural TALE proteins can’t bind well to DNA without that initial T. Molecular biologists thus have widely assumed that the same “T restriction” rule applies to any artificial TALE protein they might engineer.

“Yet no one has investigated thoroughly whether that initial thymidine is truly required for the variety of TALE designer proteins and enzymes that now exist,” said Brian M. Lamb, a research associate in the Barbas Laboratory who was first author of the new study.

Questioning Assumptions

Lamb started by evaluating how well TALE-based proteins function against their usual DNA targets when the first DNA letter is switched from a T to one of the other three nucleosides (A, G or C). Using a library of natural and engineered TALE proteins, he found strong evidence in favor of the “T restriction” rule. “There was an orders-of-magnitude difference—some of the TALE proteins we evaluated lost as much as 99.9% of their activity when we changed that first nucleoside base,” said Lamb.

But he wasn’t ready to give up on the possibility of designing more broadly useful TALE proteins. For this he adapted a “directed evolution” technique developed last year by Andrew C. Mercer, who at the time was a research associate in the Barbas laboratory. First, Lamb generated a large library of novel TALE proteins that vary randomly in the structures they hypothesized to grab the initial nucleoside. He then put these new TALEs through a series of tests, to select—in a speeded up version of natural evolution—those that work adequately even with a non-T nucleoside at the start of their target DNA sequence.

In this way, he found several new TALE protein architectures that aren’t held back by the T restriction. One prefers to bind to DNA that begins not with a T nucleoside but with a G (guanosine). Others bind well enough to sequences that start with any of the four DNA nucleosides. Lamb found that these non-T-restricted TALEs work as designed when conjoined, for example, to DNA-cutting enzyme fragments. “Essentially we abolished the T requirement,” said Lamb.

“That means that the number of DNA sites we can target with TALE-based proteins, and the precision with which we can target within any given gene, have gone up dramatically,” Barbas said.

A Multitude of Potential Uses

He and his team plan to follow up the discovery mostly by using the new unrestricted TALE-based proteins as tools for developing potential gene therapies. But the removal of the “T restriction” on TALE-based DNA editing should have a positive impact also on basic molecular biology, biotechnology, stem cell medicine, and nanotechnology when they are combined for example with DNA origami. Indeed any application that requires the manipulation of DNA in living cells or even the construction of protein-DNA machines should benefit from this breakthrough.

“The number of potential uses of this technology is probably more than any one person can imagine,” Barbas said.

The study, “Directed Evolution of the TALE N-Terminal Domain for Recognition of All 5’ Bases,” was funded in part by the National Institutes for Health Pioneer Award (grant DP1CA174426). For see the study, see

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136

Mika Ono | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>