Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Link a Protein to Initial Tumor Growth in Several Cancers

05.09.2013
A team led by scientists from The Scripps Research Institute (TSRI) have shown that a protein once thought to inhibit the growth of tumors is instead required for initial tumor growth. The findings could point to a new approach to cancer treatment.

The study was published this week as the cover article of the journal Science Signaling.

The focus of the study was angiomotin, a protein that coordinates cell migration, especially during the start of new blood vessel growth and proliferation of other cell types.

“We were the first to describe angiomotin’s involvement in cancer,” said Joseph Kissil, a TSRI associate professor who led the studies. “ And while some following studies found it to be inhibiting, we wanted to clarify its role by using both cell studies and animal models. As a result, we have now found that it is not an inhibitor at all, but instead is required for Yap to produce new tumor growth.”

Yap (Yes-associated-Protein) is a potent oncogene that is over-expressed in several types of tumors.

In addition to identifying angiomotin’s critical role in tumor formation, Kissil and his colleagues found the protein is active within the cell nucleus. Earlier cell studies focused on the function of the protein at the cell membrane.

“This pathway, which was discovered less than a decade ago, appears to regulate processes that are closely linked to cancer,” Kissil said. “The more we study it, the more we see its involvement.”

The first authors of the study, “The p130 Isoform of Angiomotin Is Required for Yap-Mediated Hepatic Epithelial Cell Proliferation and Tumorigenesis,” are Chunling Yi of Georgetown University Medical Center and Zhewei Shen of the University of Pennsylvania. Other authors include Anat Stemmer-Rachamimov of Massachusetts General Hospital; Noor Dawany, Louise C. Showe and Qin Liu of The Wistar Institute; Scott Troutman of TSRI; Akihiko Shimono of TransGenic, Inc.; Marius Sudol of Geisinger Clinic; Lars Holmgren of Karolinska Institutet, Stockholm; and Ben Z. Stanger of the University of Pennsylvania. For more information, see http://stke.sciencemag.org/cgi/content/abstract/sigtrans;6/291/ra77

This study was supported by the National Institutes of Health (grant numbers DK083355 and DK083111; CA142295 and NS077952; and CA0180815 and CA132098), the Commonwealth of PA (66651-01), the PA Breast Cancer Coalition (60707 and 920093), the Abramson Family Cancer Research Institute, the Geisinger Clinic, the Pew Charitable Trusts, the Children’s Tumor Foundation, the Georgetown Lombardi Cancer Center, a Cell and Molecular Biology training grant (GM 07229-35) and a Cancer Center Support Grant (CA051008).

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Cancer Epithelial Cell Protein Scripps TSRI angiomotin cell death cell migration cell type

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>