Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Link a Protein to Initial Tumor Growth in Several Cancers

05.09.2013
A team led by scientists from The Scripps Research Institute (TSRI) have shown that a protein once thought to inhibit the growth of tumors is instead required for initial tumor growth. The findings could point to a new approach to cancer treatment.

The study was published this week as the cover article of the journal Science Signaling.

The focus of the study was angiomotin, a protein that coordinates cell migration, especially during the start of new blood vessel growth and proliferation of other cell types.

“We were the first to describe angiomotin’s involvement in cancer,” said Joseph Kissil, a TSRI associate professor who led the studies. “ And while some following studies found it to be inhibiting, we wanted to clarify its role by using both cell studies and animal models. As a result, we have now found that it is not an inhibitor at all, but instead is required for Yap to produce new tumor growth.”

Yap (Yes-associated-Protein) is a potent oncogene that is over-expressed in several types of tumors.

In addition to identifying angiomotin’s critical role in tumor formation, Kissil and his colleagues found the protein is active within the cell nucleus. Earlier cell studies focused on the function of the protein at the cell membrane.

“This pathway, which was discovered less than a decade ago, appears to regulate processes that are closely linked to cancer,” Kissil said. “The more we study it, the more we see its involvement.”

The first authors of the study, “The p130 Isoform of Angiomotin Is Required for Yap-Mediated Hepatic Epithelial Cell Proliferation and Tumorigenesis,” are Chunling Yi of Georgetown University Medical Center and Zhewei Shen of the University of Pennsylvania. Other authors include Anat Stemmer-Rachamimov of Massachusetts General Hospital; Noor Dawany, Louise C. Showe and Qin Liu of The Wistar Institute; Scott Troutman of TSRI; Akihiko Shimono of TransGenic, Inc.; Marius Sudol of Geisinger Clinic; Lars Holmgren of Karolinska Institutet, Stockholm; and Ben Z. Stanger of the University of Pennsylvania. For more information, see http://stke.sciencemag.org/cgi/content/abstract/sigtrans;6/291/ra77

This study was supported by the National Institutes of Health (grant numbers DK083355 and DK083111; CA142295 and NS077952; and CA0180815 and CA132098), the Commonwealth of PA (66651-01), the PA Breast Cancer Coalition (60707 and 920093), the Abramson Family Cancer Research Institute, the Geisinger Clinic, the Pew Charitable Trusts, the Children’s Tumor Foundation, the Georgetown Lombardi Cancer Center, a Cell and Molecular Biology training grant (GM 07229-35) and a Cancer Center Support Grant (CA051008).

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Cancer Epithelial Cell Protein Scripps TSRI angiomotin cell death cell migration cell type

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>