Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Link a Protein to Initial Tumor Growth in Several Cancers

05.09.2013
A team led by scientists from The Scripps Research Institute (TSRI) have shown that a protein once thought to inhibit the growth of tumors is instead required for initial tumor growth. The findings could point to a new approach to cancer treatment.

The study was published this week as the cover article of the journal Science Signaling.

The focus of the study was angiomotin, a protein that coordinates cell migration, especially during the start of new blood vessel growth and proliferation of other cell types.

“We were the first to describe angiomotin’s involvement in cancer,” said Joseph Kissil, a TSRI associate professor who led the studies. “ And while some following studies found it to be inhibiting, we wanted to clarify its role by using both cell studies and animal models. As a result, we have now found that it is not an inhibitor at all, but instead is required for Yap to produce new tumor growth.”

Yap (Yes-associated-Protein) is a potent oncogene that is over-expressed in several types of tumors.

In addition to identifying angiomotin’s critical role in tumor formation, Kissil and his colleagues found the protein is active within the cell nucleus. Earlier cell studies focused on the function of the protein at the cell membrane.

“This pathway, which was discovered less than a decade ago, appears to regulate processes that are closely linked to cancer,” Kissil said. “The more we study it, the more we see its involvement.”

The first authors of the study, “The p130 Isoform of Angiomotin Is Required for Yap-Mediated Hepatic Epithelial Cell Proliferation and Tumorigenesis,” are Chunling Yi of Georgetown University Medical Center and Zhewei Shen of the University of Pennsylvania. Other authors include Anat Stemmer-Rachamimov of Massachusetts General Hospital; Noor Dawany, Louise C. Showe and Qin Liu of The Wistar Institute; Scott Troutman of TSRI; Akihiko Shimono of TransGenic, Inc.; Marius Sudol of Geisinger Clinic; Lars Holmgren of Karolinska Institutet, Stockholm; and Ben Z. Stanger of the University of Pennsylvania. For more information, see http://stke.sciencemag.org/cgi/content/abstract/sigtrans;6/291/ra77

This study was supported by the National Institutes of Health (grant numbers DK083355 and DK083111; CA142295 and NS077952; and CA0180815 and CA132098), the Commonwealth of PA (66651-01), the PA Breast Cancer Coalition (60707 and 920093), the Abramson Family Cancer Research Institute, the Geisinger Clinic, the Pew Charitable Trusts, the Children’s Tumor Foundation, the Georgetown Lombardi Cancer Center, a Cell and Molecular Biology training grant (GM 07229-35) and a Cancer Center Support Grant (CA051008).

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

Further reports about: Cancer Epithelial Cell Protein Scripps TSRI angiomotin cell death cell migration cell type

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>