Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scripps Florida scientists find genetic mutations linked to salivary gland tumors


The findings may point the way to new cancer treatments

Research conducted at the Florida campus of The Scripps Research Institute (TSRI) has discovered links between a set of genes known to promote tumor growth and mucoepidermoid carcinoma, an oral cancer that affects the salivary glands.

The discovery could help physicians develop new treatments that target the cancer's underlying genetic causes.

The research, recently published online ahead of print by the Proceedings of the National Academy of Sciences, shows that a pair of proteins joined together by a genetic mutation—known as CRTC1/MAML2 (C1/M2)—work with MYC, a protein commonly associated with other cancers, to promote the oral cancer's growth and spread.

"This research provides new insights into the molecular mechanisms of these malignances and points to a new direction for potential therapies," says TSRI biologist Michael Conkright, PhD, who led the study.

The C1/M2 protein is created when the genes encoding CRTC1 and MAML2 mutate into a single gene through a process known as chromosomal translocation.

Such mutant "chimera" genes are linked to the formation of several forms of cancer. The team discovered that the C1/M2 protein further activates genetic pathways regulated by MYC, in addition to CREB, to begin a series of cellular changes leading to the development of mucoepidermoid carcinoma.

"The identification of unique interactions between C1/M2 and MYC suggests that drugs capable of disrupting these interactions may have therapeutic potential in the treatment of mucoepidermoid carcinomas, " said Antonio L. Amelio, Ph.D., first author of the study who is now assistant professor with the UNC School of Dentistry and member of the UNC Lineberger Comprehensive Cancer Center.

Researchers have known about the role of C1/M2 and its interactions with another protein, CREB, in the development of mucoepidermoid carcinoma, and physicians screen patients for the presence of the C1/M2 protein when testing for this cancer.

These new findings deepen the understanding of C1/M2's role by revealing that it works with a family of cancer-associated genes known as the MYC family to drive the cellular changes necessary for a tumor to develop.

The discovery of these new protein interactions may also reveal insights into the mechanisms behind other cancers that arise due to other genetic mutations involving the CREB and MYC pathways.


In addition to Conkright and Amelio, other authors of the study, "CRTC1/MAML2 gain-of-function interactions with MYC create a gene signature predictive of cancers with CREB–MYC involvement," include Mohammad Fallahi of IT Informatics, Franz X. Schaub, Mariam B. Lawani, Adam S. Alperstein, Mark R. Southern, Brandon M. Young, and John L. Cleveland of TSRI, and Min Zhang, Lizi Wu, Maria Zajac-Kaye, and Frederic J. Kaye of Shands Cancer Center, University of Florida (Gainsville).

The research was supported in part by a Howard Temin Pathway to Independence Award in Cancer Research from the National Cancer Institute (NCI) (K99-CA157954), National Institutes of Health/NCI R01 Grant CA100603, a PGA National WCAD Cancer Research Fellowship and Ruth L. Kirschstein National Research Service Award from the National Cancer Institute (F32-CA134121), the Margaret Q. Landerberger Research Foundation, a Swiss National Foundation Postdoctoral Fellowship and monies from the State of Florida to TSRI's Scripps Florida.

Eric Sauter | Eurek Alert!
Further information:

Further reports about: CREB Cancer TSRI carcinoma genes gland interactions mechanisms mutations pathways salivary tumors

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>