Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scripps Florida Scientists Develop New Process to Create Artificial Cell Membranes

02.10.2013
The membranes surrounding and inside cells are involved in every aspect of biological function.

They separate the cell’s various metabolic functions, compartmentalize the genetic material, and drive evolution by separating a cell’s biochemical activities. They are also the largest and most complex structures that cells synthesize.

Understanding the myriad biochemical roles of membranes requires the ability to prepare synthetic versions of these complex multi-layered structures, which has been a long-standing challenge.

In a study published this week by Nature Chemistry, scientists at The Scripps Research Institute (TSRI) report a highly programmable and controlled platform for preparing and experimentally probing synthetic cellular structures.

“Layer-by-layer membrane assembly allows us to create synthetic cells with membranes of arbitrary complexity at the molecular and supramolecular scale,” said TSRI Assistant Professor Brian Paegel, who authored the study with Research Associate Sandro Matosevic. “We can now control the molecular composition of the inner and outer layers of a bilayer membrane, and even assemble multi-layered membranes that resemble the envelope of the cell nucleus.”

Starting with a technique commonly used to deposit molecules on a solid surface, Langmuir-Blodgett deposition, the scientists repurposed the approach to work on liquid objects.

The scientists engineered a microfluidic device containing an array of microscopic cups, each trapping a single droplet of water bathed in oil and lipids, the molecules that make up cellular membranes. The trapped droplets are then ready to serve as a foundation for building up a series of lipid layers like coats of paint.

The lipid-coated water droplets are first bathed in water. As the water/oil interface encounters the trapped droplets, a second lipid layer coats the droplets and transforms them into what are known as unilamellar or single-layer vesicles. Bathing the vesicles in oil/lipid deposits a third lipid layer, and followed by a final layer of lipids that is deposited on the trapped drops to yield double-bilayer vesicles.

“The computer-controlled microfluidic circuits we have constructed will allow us to assemble synthetic cells not only from biologically derived lipids, but from any amphiphile and to measure important chemical and physical parameters, such as permeability and stability,” said Paegel.

The study, “Layer-by-layer Cell Membrane Assembly,” was supported by a National Institutes of Health Pathway to Independence Career Development Award (GM083155) and a National Science Foundation CAREER Award (1255250). For more information on the research, see http://www.nature.com/nchem/journal/vaop/ncurrent/abs/nchem.1765.html

About The Scripps Research Institute
The Scripps Research Institute (TSRI) is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. TSRI is internationally recognized for its contributions to science and health, including its role in laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. An institution that evolved from the Scripps Metabolic Clinic founded by philanthropist Ellen Browning Scripps in 1924, the institute now employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists—including three Nobel laureates—work toward their next discoveries. The institute's graduate program, which awards PhD degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-2666
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>