Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Screening technique uncovers 5 new plant activator compounds

Immune-priming compounds identified using new screening technique protect crops without affecting plant growth, crop yield

A new high-throughput screening technique developed by researchers at the RIKEN Plant Science Center (PSC) has been used to uncover five novel immune-priming compounds in Arabidopsis plants.

Discovery of the compounds, which enhance disease resistance without impacting plant growth or crop yield, establishes the new technique as a powerful asset in the battle to protect crops from damaging pathogens.

Plant activators, compounds that activate a plant's immune system in response to invasion by pathogens, play a crucial role in crop survival by triggering a range of immune responses. Unlike pesticides, plant activators are not pathogen specific and also not affected by drug resistance, making them ideal for use in agriculture. Wet-rice farmers across East Asia use plant activators as a sustainable means to enhance crop durability without the environmental consequences of microbial pesticides.

One of the key problems of plant activators, however, is that the activation of plant responses they trigger is often associated with arrested growth and reductions in crop yield. Determining why this is so is difficult because despite their widespread use, the molecular mechanisms governing how plant activators work are largely unknown.

The new screening technique developed by the PSC team overcomes this challenge by distinguishing between compounds that induce immune responses on their own from those that do so exclusively in the presence of a pathogen. The former class of compounds, which includes known plant activators, can be toxic to cells and was thus eliminated in the screening. The resulting five compounds, identified from a total of 10,000 compounds screened, enhance resistance against pathogenic Pseudomonas bacteria by priming immune response without directly activating defense genes.

Further investigation revealed that the five compounds inhibit two enzymes that inactivate the defense hormone salicylic acid (SA glucosyltransferases or SAGTs), and gene knockout experiments confirmed that plants without these enzymes exhibit enhanced disease resistance. Together, the results establish the effectiveness of the new technique for finding useful plant activators and the power of SA metabolism as a strategy for crop protection.


Yoshiteru Noutoshi, Masateru Okazaki, Tatsuya Kida, Yuta Nishina, Yoshihiko Morishita, Takumi Ogawa, Hideyuki Suzuki, Daisuke Shibata, Yusuke Jikumaru, Atsushi Hanada, Yuji Kamiya, and Ken Shirasu. Novel Plant Immune-Priming Compounds Identified via High-Throughput Chemical Screening Target Salicylic Acid Glucosyltransferases in Arabidopsis. The Plant Cell, 2012. DOI: doi/10.1105/tpc.112.098343


RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.
About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

Reach us on Twitter: @rikenresearch

RIKEN Global Relations Office | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>