Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Screening technique uncovers 5 new plant activator compounds

11.09.2012
Immune-priming compounds identified using new screening technique protect crops without affecting plant growth, crop yield

A new high-throughput screening technique developed by researchers at the RIKEN Plant Science Center (PSC) has been used to uncover five novel immune-priming compounds in Arabidopsis plants.

Discovery of the compounds, which enhance disease resistance without impacting plant growth or crop yield, establishes the new technique as a powerful asset in the battle to protect crops from damaging pathogens.

Plant activators, compounds that activate a plant's immune system in response to invasion by pathogens, play a crucial role in crop survival by triggering a range of immune responses. Unlike pesticides, plant activators are not pathogen specific and also not affected by drug resistance, making them ideal for use in agriculture. Wet-rice farmers across East Asia use plant activators as a sustainable means to enhance crop durability without the environmental consequences of microbial pesticides.

One of the key problems of plant activators, however, is that the activation of plant responses they trigger is often associated with arrested growth and reductions in crop yield. Determining why this is so is difficult because despite their widespread use, the molecular mechanisms governing how plant activators work are largely unknown.

The new screening technique developed by the PSC team overcomes this challenge by distinguishing between compounds that induce immune responses on their own from those that do so exclusively in the presence of a pathogen. The former class of compounds, which includes known plant activators, can be toxic to cells and was thus eliminated in the screening. The resulting five compounds, identified from a total of 10,000 compounds screened, enhance resistance against pathogenic Pseudomonas bacteria by priming immune response without directly activating defense genes.

Further investigation revealed that the five compounds inhibit two enzymes that inactivate the defense hormone salicylic acid (SA glucosyltransferases or SAGTs), and gene knockout experiments confirmed that plants without these enzymes exhibit enhanced disease resistance. Together, the results establish the effectiveness of the new technique for finding useful plant activators and the power of SA metabolism as a strategy for crop protection.

Reference:

Yoshiteru Noutoshi, Masateru Okazaki, Tatsuya Kida, Yuta Nishina, Yoshihiko Morishita, Takumi Ogawa, Hideyuki Suzuki, Daisuke Shibata, Yusuke Jikumaru, Atsushi Hanada, Yuji Kamiya, and Ken Shirasu. Novel Plant Immune-Priming Compounds Identified via High-Throughput Chemical Screening Target Salicylic Acid Glucosyltransferases in Arabidopsis. The Plant Cell, 2012. DOI: doi/10.1105/tpc.112.098343

About RIKEN

RIKEN is Japan's flagship research institute devoted to basic and applied research. Over 2500 papers by RIKEN researchers are published every year in reputable scientific and technical journals, covering topics ranging across a broad spectrum of disciplines including physics, chemistry, biology, medical science and engineering. RIKEN's advanced research environment and strong emphasis on interdisciplinary collaboration has earned itself an unparalleled reputation for scientific excellence in Japan and around the world.
About the RIKEN Plant Science Center

With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC's broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

Reach us on Twitter: @rikenresearch

RIKEN Global Relations Office | EurekAlert!
Further information:
http://www.riken.jp

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>