Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New screen offers hope for copper deficiency sufferers

17.08.2010
Chemical-biology study reveals secrets of copper metabolism

Copper deficiency diseases can be devastating. Symptoms can range from crippling neurological degeneration in Menkes disease – a classic copper deficiency disease – to brittle bones, anaemia and defective skin pigmentation in gastric bypass patients. Unfortunately, very little is known about how the body uses this essential nutrient.

Knowing that melanocytes (the cells that give rise to hair, skin and eye pigmentation) are dramatically affected by the effects of copper deficiency, Elizabeth Patton from the University of Edinburgh, UK, and other colleagues from UK- and US-based labs decided to find out how melanocytes metabolise copper. Patton and her colleagues publish their results in Disease Models and Mechanisms on August 17, 2010 at http://dmm.biologists.org/.

Patton explains that zebrafish are a valuable research tool because they are an intermediate organism between mammals and the simpler creatures that scientists routinely use to study genetic disorders. She usually uses zebrafish to understand how melanocytes develop and how these cells can give rise to malignant melanoma, a lethal form of cancer. Testing compounds that she hoped might prevent malignant melanoma symptoms in zebrafish, she was puzzled to find a compound that caused the fish to lose their characteristic zebra-stripe patterns. After spending months trying to determine why the fish lost their stripes, she crossed paths with Jonathan Gitlin, a copper deficiency specialist from Vanderbilt University, USA, and realised that the stripeless fish might have copper deficiency.

To understand the molecular pathways involved in copper deficiency, Patton and Gitlin teamed up with Mike Tyers from the University of Edinburgh and developed an elegant method to probe copper metabolism in zebrafish. First, the team identified compounds that caused zebrafish to lose their stripes – indicating copper deficiency. Next, they identified the genes that each compound targeted by applying the compounds to yeast cells. Patton explains that most of the genes that control copper metabolism are very similar in yeast, zebrafish and humans, so the genes identified in this study should increase our understanding of what makes certain people susceptible to copper deficiency.

The team found that mutations in certain proteins that move nutrients around cells (trafficking components) increase the risk that carriers will be susceptible to copper deficiency when the copper supply is restricted, such as after gastric bypass surgery. Patton says, "You might have people with polymorphisms [variations in a single gene] in some of these trafficking components that are fine, but under certain environmental conditions some of the weaknesses are revealed."

This work demonstrates the utility of the coupled zebrafish-yeast approach for studying copper deficiency, but it can also be applied for studying other complex multifactorial diseases, particularly those with an environmental component. "There have been some beautiful studies looking at transport components in melanocytes, which have linked copper metabolism pathways with transport. What's new here is that we can investigate a gene-environment interaction," says Patton, who hopes to apply the method for studying cardiofaciocutaneous syndrome, a rare genetic disorder with crippling symptoms ranging from skin abnormalities to heart defects. In addition, her team plans to apply the method to investigate how drug candidates function in vivo.

REFERENCE: Ishizaki, H., Spitzer, M., Wildenhain, J., Anastasaki, C., Zeng, Z., Shaw, M., Erik Madsen, E., Gitlin, J., Marais, R., Tyers, M. Patton, E. E. (2010). Combined zebrafish-yeast chemical genetic screens reveal gene-copper nutrition interactions that modulate melanocyte pigmentation. Dis. Model. Mech. doi:10.1242/dmm.005769

Sarah Allan | EurekAlert!
Further information:
http://www.biologists.com
http://dmm.biologists.org/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>