Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scorpion Venom Provides Clues to Cause, Treatment of Pancreatitis

A Brazilian scorpion has provided researchers at North Carolina State University and East Carolina University insight into venom’s effects on the ability of certain cells to release critical components. The findings may prove useful in understanding diseases like pancreatitis or in targeted drug delivery.

A common result of scorpion stings, pancreatitis is an inflammation of the pancreas. ECU microbiologist Dr. Paul Fletcher believed that scorpion venom might be used as a way to discover how pancreatitis occurs – to see which cellular processes are affected at the onset of the disease.

Fletcher pinpointed a protein production system found in the pancreas that seemed to be targeted by the venom of the Brazilian scorpion Tityus serrulatus and then contacted NC State physicist Dr. Keith Weninger, who had studied that particular protein system.

“This particular protein system has special emphasis at two places in the body – the pancreas and the nervous system,” Weninger says. “In the pancreas, it is involved in the release of proteins through the membrane of a cell.” The pancreas specializes in releasing two kinds of proteins using separate cells: digestive enzymes that go into the small intestine and insulin and its relatives that go into the bloodstream, yet this same release mechanism is important in all of our cells for many processes.

Cells move components in and out through a process called vesicle fusion. The vesicle is a tiny, bubble-like chamber inside the cell that contains the substance to be moved, stored and released – in this case, proteins like enzymes or hormones. The vesicle is moved through the cell and attaches to the exterior membrane, where the vesicle acts like an airlock in a spaceship, allowing the cell membrane to open and release the proteins without disturbing the rest of the cell’s contents. The proteins that aid in this process are known as Vesicle Associated Membrane Proteins, or VAMPs.

Weninger provided Fletcher with two different VAMP proteins found in the pancreas, VAMP2 and VAMP8. They were engineered to remove the membrane attachments so they could be more easily used for experiments outside cells and tissues. Fletcher’s team demonstrated that the scorpion venom attacked the VAMP proteins, cutting them in one place and eliminating the vesicle’s ability to transport its protein cargo out of the cell.

The results were published in the March 5 issue of the Journal of Biological Chemistry.

“We found that a particular enzyme in the scorpion’s venom removes a peptide, or small protein, that allows the vesicle to fuse with the cell membrane,” Fletcher says. “If you remove a pancreatic cell’s ability to absorb or release components, you end up with pancreatitis.”

“Viruses often exploit the same mechanism of vesicle fusion, but in reverse, in order to invade cells and replicate,” Weninger adds. “This work furthers our understanding of a basic cellular process and may lead to treatments for viruses and advances in treatments like chemotherapy, by allowing targeted drug delivery only to cancer cells.”

The Department of Physics is part of NC State University’s College of Physical and Mathematical Sciences.

Tracey Peake | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>