Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scorpion venom -– bad for bugs, good for pesticides

28.04.2011
Fables have long cast scorpions as bad-natured killers of hapless turtles that naively agree to ferry them across rivers. Michigan State University scientists, however, see them in a different light.

Ke Dong, MSU insect toxicologist and neurobiologist, studied the effects of scorpion venom with the hopes of finding new ways to protect plants from bugs. The results, which are published in the current issue of the Journal of Biological Chemistry, have revealed new ways in which the venom works.

Past research identified scorpion toxin's usefulness in the development of insecticides. Its venom attacks various channels and receptors that control their prey's nervous and muscular systems. One major target of scorpion toxins is the voltage-gated sodium channel, a protein found in nerve and muscle cells used for rapid electrical signaling.

"Interestingly, some scorpion toxins selectively affect one type of sodium channels, but not others," Dong said. "The goal of our scorpion toxin project is to understand why certain scorpion toxins act on insect sodium channels, but not their mammalian counterparts."

Dong and a team of researchers were able to identify amino acid residues in insect sodium channels that make the channels more vulnerable to the venom from the Israeli desert scorpion. The team also discovered that an important sodium channel voltage sensor can influence the potency of the scorpion toxin.

"Investigating the venom's effect on the voltage-gated sodium channel could provide valuable information for designing new insecticides that work by selectively targeting insect sodium channels," Dong said.

Several classes of insecticides act on sodium channels, but insects become resistant to them over time. The researchers are studying how insects develop resistance and what alternatives can be created to control resistant pests, Dong added.

Scientists from Tel Aviv University and the University of California at Irvine contributed to this study. Dong's research is funded in part by the National Science Foundation, the National Institutes of Health, the Binational Agricultural Research and Development Fund, and MSU AgBioResearch.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>