Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scorpion venom -– bad for bugs, good for pesticides

28.04.2011
Fables have long cast scorpions as bad-natured killers of hapless turtles that naively agree to ferry them across rivers. Michigan State University scientists, however, see them in a different light.

Ke Dong, MSU insect toxicologist and neurobiologist, studied the effects of scorpion venom with the hopes of finding new ways to protect plants from bugs. The results, which are published in the current issue of the Journal of Biological Chemistry, have revealed new ways in which the venom works.

Past research identified scorpion toxin's usefulness in the development of insecticides. Its venom attacks various channels and receptors that control their prey's nervous and muscular systems. One major target of scorpion toxins is the voltage-gated sodium channel, a protein found in nerve and muscle cells used for rapid electrical signaling.

"Interestingly, some scorpion toxins selectively affect one type of sodium channels, but not others," Dong said. "The goal of our scorpion toxin project is to understand why certain scorpion toxins act on insect sodium channels, but not their mammalian counterparts."

Dong and a team of researchers were able to identify amino acid residues in insect sodium channels that make the channels more vulnerable to the venom from the Israeli desert scorpion. The team also discovered that an important sodium channel voltage sensor can influence the potency of the scorpion toxin.

"Investigating the venom's effect on the voltage-gated sodium channel could provide valuable information for designing new insecticides that work by selectively targeting insect sodium channels," Dong said.

Several classes of insecticides act on sodium channels, but insects become resistant to them over time. The researchers are studying how insects develop resistance and what alternatives can be created to control resistant pests, Dong added.

Scientists from Tel Aviv University and the University of California at Irvine contributed to this study. Dong's research is funded in part by the National Science Foundation, the National Institutes of Health, the Binational Agricultural Research and Development Fund, and MSU AgBioResearch.

Michigan State University has been working to advance the common good in uncommon ways for more than 150 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Layne Cameron | EurekAlert!
Further information:
http://www.msu.edu

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>