Scissoring the lipids

The method is now being developed to explore the possibility of creating a tuberculosis (TB) vaccine.

The organic synthesis strategy, developed by Professor Varinder Aggarwal and Dr Ramesh Rasappan in the School of Chemistry, involves a new method for combining smaller fragments together in which there is no obvious history in the product of their genesis.

The paper describes not only this new strategy, but also its application to the shortest known synthesis, just 14 steps, of hydroxyphthioceranic acid, a key component of the cell wall lipid of the virulent mycobacterium tuberculosis.

Professor Aggarwal said: “Tuberculosis bacteria (TB) have an extraordinary thick lipid coat which acts as an impenetrable waxy barrier to cytotoxic agents, making it especially challenging to combat. Vaccination would be an ideal solution against TB and the lipid coat has been identified as a potential antigen.

This requires the synthesis of the complex lipid which is composed of a disaccharide sugar core along with the complex chiral lipid, hydroxyphthioceranic acid.”

In a collaborative project funded by the Gates Foundation, the method is now being scaled up to explore the possibility of creating a TB vaccine based on the cell wall sulfolipid.

###

Paper: Synthesis of hydroxyphthioceranic acid using a traceless lithiation–borylation–protodeboronation strategy, Ramesh Rasappan and Varinder K. Aggarwal, Nature Chemistry (2014), doi:10.1038/nchem.2010, published online 27 July 2014. 

Media Contact

Hannah Johnson Eurek Alert!

More Information:

http://www.bristol.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors