Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists weed out pesky poison ivy with discovery of killer fungus

12.06.2014

The findings by Virginia Tech researchers could make the maddening itch of the summer season a thing of the past for the untold millions who are allergic to the plant

Much to the chagrin of gardeners, hikers, and virtually anyone enjoying the outdoors, one of the hazards of summer is picking up an itchy poison ivy rash.


John Jelesko and Matt Kasson in the Virginia Tech College of Agriculture and Life Sciences have discovered a way to kill poison ivy naturally.

Credit: Virginia Tech College of Agriculture and Life Sciences

But researchers in the Virginia Tech College of Agriculture and Life Sciences have found a natural and effective way to kill poison ivy using a naturally occurring fungus that grows on the fleshy tissue surrounding the plant's seed, potentially giving homeowners and forest managers the ability to rid landscapes of the pernicious pest. Their findings could make the maddening itch of the summer season a thing of the past for the untold millions who are allergic to the plant.

The study published this week in Plant Disease is a first of its kind on a plant that affects millions but has had surprisingly little research done on it.

... more about:
»chemicals »fungus »herbicides »invasive »killer »poison »seeds »weed

John Jelesko, an associate professor of plant pathology, physiology, and weed science, began studying the plant after experiencing a nasty poison ivy rash himself while doing some yard work. Much to his surprise, there was scant research focused on the plant itself. Most of the work was focused on urushiol, the rash-causing chemical found in the plant's oils. Urushiol is extremely potent. Only one nanogram is needed to cause a rash, and the oil can remain active on dead plants up to five years.

But rather than focusing on urushiol, Jelesko set about studying ways to kill the plant itself. He worked with Matt Kasson on the project, a senior research associate in the same department.

"This poison ivy research has the potential to affect the untold millions of people who are allergic to poison ivy," said John Jelesko, a Fralin Life Science Institute-affiliated faculty member. "We have the makings of a nonchemical way to control an invasive plant that can be used by homeowners and others who manage outdoor sites."

Their work is especially valuable in light of the fact that a 2006 study showed that as the planet warms, poison ivy is predicted to grow faster, bigger, and more allergenic, causing much more serious reactions that could send an increasing number of people to the doctor for prescription medications.

"When poison ivy can't be treated with over-the-counter treatments and requires an outpatient visit, then we are talking about a public health concern that is very real,” said Kasson.

The research team discovered the killer fungus in their initial attempts to generate microbe-free poison ivy seedlings to use in their studies. Jelesko noticed that not only were some of the seeds failing to germinate, but on the seedlings that did germinate, there was a blight wiping out the young seedlings. Jelesko enlisted the help of Kasson to isolate what he suspected was a fungus causing disease in the plants. The team discovered that the fungus was growing on all the plants that died and the seeds that didn't germinate.

The fungus caused wilt and chlorophyll loss on the seedlings just by placing it at the junction of the main stem and root collar of the plant at three weeks post-inoculation. At seven weeks post-inoculation, all but one of the plants had died.

Though herbicides are available to kill poison ivy, Jelesko and Kasson said that if this fungus were developed into a commercial application, it would not only be more effective than its chemical counterparts, but also has the benefit of being completely natural.

"We have to keep in mind that the chemicals used to control poison ivy are general herbicides, meaning that they will affect and probably kill many other plant species, so their use in large areas is not always practical," said Thomas Mitchell, associate professor of fungal biology and molecular genetics at Ohio State University who is familiar with the research but not affiliated with it. "This work shows promise for an alternative approach to the use of chemicals and has great potential as a biological control alternative. This type of approach, using native pathogens to control noxious and invasive plants, is gaining more much deserved recognition."

Kasson, whose research is funded by the U.S. Department of Agriculture Forest Service, believes it would be relatively simple to develop a soil granular to spread on top of poison ivy-infested areas in yards and recreational areas such as campgrounds to naturally infect the plants and kill them.

After Kasson successfully isolated the fungus in pure culture from infected plants, a DNA analysis revealed that the fungus — Colletotrichum fioriniae — is also widely known as an insect pathogen that kills an invasive bug that infests and kills hemlock trees.

In all of the natural world, only humans are allergic to poison ivy and its itch-inducing oil, urushiol.

"Humans appear to be uniquely allergic to urushiol," said Jelesko. "Goats eat it, deer eat it, and birds eat the seeds, all to no ill effects."

###

Jelesko and Kasson have filed for a patent disclosure of their current findings, and say that this research just scratches the surface of possible avenues for the study of poison ivy.

Lori Greiner | Eurek Alert!

Further reports about: chemicals fungus herbicides invasive killer poison seeds weed

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>