Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists weed out pesky poison ivy with discovery of killer fungus

12.06.2014

The findings by Virginia Tech researchers could make the maddening itch of the summer season a thing of the past for the untold millions who are allergic to the plant

Much to the chagrin of gardeners, hikers, and virtually anyone enjoying the outdoors, one of the hazards of summer is picking up an itchy poison ivy rash.


John Jelesko and Matt Kasson in the Virginia Tech College of Agriculture and Life Sciences have discovered a way to kill poison ivy naturally.

Credit: Virginia Tech College of Agriculture and Life Sciences

But researchers in the Virginia Tech College of Agriculture and Life Sciences have found a natural and effective way to kill poison ivy using a naturally occurring fungus that grows on the fleshy tissue surrounding the plant's seed, potentially giving homeowners and forest managers the ability to rid landscapes of the pernicious pest. Their findings could make the maddening itch of the summer season a thing of the past for the untold millions who are allergic to the plant.

The study published this week in Plant Disease is a first of its kind on a plant that affects millions but has had surprisingly little research done on it.

... more about:
»chemicals »fungus »herbicides »invasive »killer »poison »seeds »weed

John Jelesko, an associate professor of plant pathology, physiology, and weed science, began studying the plant after experiencing a nasty poison ivy rash himself while doing some yard work. Much to his surprise, there was scant research focused on the plant itself. Most of the work was focused on urushiol, the rash-causing chemical found in the plant's oils. Urushiol is extremely potent. Only one nanogram is needed to cause a rash, and the oil can remain active on dead plants up to five years.

But rather than focusing on urushiol, Jelesko set about studying ways to kill the plant itself. He worked with Matt Kasson on the project, a senior research associate in the same department.

"This poison ivy research has the potential to affect the untold millions of people who are allergic to poison ivy," said John Jelesko, a Fralin Life Science Institute-affiliated faculty member. "We have the makings of a nonchemical way to control an invasive plant that can be used by homeowners and others who manage outdoor sites."

Their work is especially valuable in light of the fact that a 2006 study showed that as the planet warms, poison ivy is predicted to grow faster, bigger, and more allergenic, causing much more serious reactions that could send an increasing number of people to the doctor for prescription medications.

"When poison ivy can't be treated with over-the-counter treatments and requires an outpatient visit, then we are talking about a public health concern that is very real,” said Kasson.

The research team discovered the killer fungus in their initial attempts to generate microbe-free poison ivy seedlings to use in their studies. Jelesko noticed that not only were some of the seeds failing to germinate, but on the seedlings that did germinate, there was a blight wiping out the young seedlings. Jelesko enlisted the help of Kasson to isolate what he suspected was a fungus causing disease in the plants. The team discovered that the fungus was growing on all the plants that died and the seeds that didn't germinate.

The fungus caused wilt and chlorophyll loss on the seedlings just by placing it at the junction of the main stem and root collar of the plant at three weeks post-inoculation. At seven weeks post-inoculation, all but one of the plants had died.

Though herbicides are available to kill poison ivy, Jelesko and Kasson said that if this fungus were developed into a commercial application, it would not only be more effective than its chemical counterparts, but also has the benefit of being completely natural.

"We have to keep in mind that the chemicals used to control poison ivy are general herbicides, meaning that they will affect and probably kill many other plant species, so their use in large areas is not always practical," said Thomas Mitchell, associate professor of fungal biology and molecular genetics at Ohio State University who is familiar with the research but not affiliated with it. "This work shows promise for an alternative approach to the use of chemicals and has great potential as a biological control alternative. This type of approach, using native pathogens to control noxious and invasive plants, is gaining more much deserved recognition."

Kasson, whose research is funded by the U.S. Department of Agriculture Forest Service, believes it would be relatively simple to develop a soil granular to spread on top of poison ivy-infested areas in yards and recreational areas such as campgrounds to naturally infect the plants and kill them.

After Kasson successfully isolated the fungus in pure culture from infected plants, a DNA analysis revealed that the fungus — Colletotrichum fioriniae — is also widely known as an insect pathogen that kills an invasive bug that infests and kills hemlock trees.

In all of the natural world, only humans are allergic to poison ivy and its itch-inducing oil, urushiol.

"Humans appear to be uniquely allergic to urushiol," said Jelesko. "Goats eat it, deer eat it, and birds eat the seeds, all to no ill effects."

###

Jelesko and Kasson have filed for a patent disclosure of their current findings, and say that this research just scratches the surface of possible avenues for the study of poison ivy.

Lori Greiner | Eurek Alert!

Further reports about: chemicals fungus herbicides invasive killer poison seeds weed

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>