Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists weed out pesky poison ivy with discovery of killer fungus

12.06.2014

The findings by Virginia Tech researchers could make the maddening itch of the summer season a thing of the past for the untold millions who are allergic to the plant

Much to the chagrin of gardeners, hikers, and virtually anyone enjoying the outdoors, one of the hazards of summer is picking up an itchy poison ivy rash.


John Jelesko and Matt Kasson in the Virginia Tech College of Agriculture and Life Sciences have discovered a way to kill poison ivy naturally.

Credit: Virginia Tech College of Agriculture and Life Sciences

But researchers in the Virginia Tech College of Agriculture and Life Sciences have found a natural and effective way to kill poison ivy using a naturally occurring fungus that grows on the fleshy tissue surrounding the plant's seed, potentially giving homeowners and forest managers the ability to rid landscapes of the pernicious pest. Their findings could make the maddening itch of the summer season a thing of the past for the untold millions who are allergic to the plant.

The study published this week in Plant Disease is a first of its kind on a plant that affects millions but has had surprisingly little research done on it.

... more about:
»chemicals »fungus »herbicides »invasive »killer »poison »seeds »weed

John Jelesko, an associate professor of plant pathology, physiology, and weed science, began studying the plant after experiencing a nasty poison ivy rash himself while doing some yard work. Much to his surprise, there was scant research focused on the plant itself. Most of the work was focused on urushiol, the rash-causing chemical found in the plant's oils. Urushiol is extremely potent. Only one nanogram is needed to cause a rash, and the oil can remain active on dead plants up to five years.

But rather than focusing on urushiol, Jelesko set about studying ways to kill the plant itself. He worked with Matt Kasson on the project, a senior research associate in the same department.

"This poison ivy research has the potential to affect the untold millions of people who are allergic to poison ivy," said John Jelesko, a Fralin Life Science Institute-affiliated faculty member. "We have the makings of a nonchemical way to control an invasive plant that can be used by homeowners and others who manage outdoor sites."

Their work is especially valuable in light of the fact that a 2006 study showed that as the planet warms, poison ivy is predicted to grow faster, bigger, and more allergenic, causing much more serious reactions that could send an increasing number of people to the doctor for prescription medications.

"When poison ivy can't be treated with over-the-counter treatments and requires an outpatient visit, then we are talking about a public health concern that is very real,” said Kasson.

The research team discovered the killer fungus in their initial attempts to generate microbe-free poison ivy seedlings to use in their studies. Jelesko noticed that not only were some of the seeds failing to germinate, but on the seedlings that did germinate, there was a blight wiping out the young seedlings. Jelesko enlisted the help of Kasson to isolate what he suspected was a fungus causing disease in the plants. The team discovered that the fungus was growing on all the plants that died and the seeds that didn't germinate.

The fungus caused wilt and chlorophyll loss on the seedlings just by placing it at the junction of the main stem and root collar of the plant at three weeks post-inoculation. At seven weeks post-inoculation, all but one of the plants had died.

Though herbicides are available to kill poison ivy, Jelesko and Kasson said that if this fungus were developed into a commercial application, it would not only be more effective than its chemical counterparts, but also has the benefit of being completely natural.

"We have to keep in mind that the chemicals used to control poison ivy are general herbicides, meaning that they will affect and probably kill many other plant species, so their use in large areas is not always practical," said Thomas Mitchell, associate professor of fungal biology and molecular genetics at Ohio State University who is familiar with the research but not affiliated with it. "This work shows promise for an alternative approach to the use of chemicals and has great potential as a biological control alternative. This type of approach, using native pathogens to control noxious and invasive plants, is gaining more much deserved recognition."

Kasson, whose research is funded by the U.S. Department of Agriculture Forest Service, believes it would be relatively simple to develop a soil granular to spread on top of poison ivy-infested areas in yards and recreational areas such as campgrounds to naturally infect the plants and kill them.

After Kasson successfully isolated the fungus in pure culture from infected plants, a DNA analysis revealed that the fungus — Colletotrichum fioriniae — is also widely known as an insect pathogen that kills an invasive bug that infests and kills hemlock trees.

In all of the natural world, only humans are allergic to poison ivy and its itch-inducing oil, urushiol.

"Humans appear to be uniquely allergic to urushiol," said Jelesko. "Goats eat it, deer eat it, and birds eat the seeds, all to no ill effects."

###

Jelesko and Kasson have filed for a patent disclosure of their current findings, and say that this research just scratches the surface of possible avenues for the study of poison ivy.

Lori Greiner | Eurek Alert!

Further reports about: chemicals fungus herbicides invasive killer poison seeds weed

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>