Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Visualize How Bacteria Talk to One Another

09.11.2009
Using imaging mass spectrometry, researchers at the University of California, San Diego have developed tools that will enable scientists to visualize how different cell populations of cells communicate. Their study shows how bacteria talk to one another – an understanding that may lead to new therapeutic discoveries for diseases ranging from cancer to diabetes and allergies.

In the paper published in the November 8 issue of Nature Chemical Biology, Pieter C. Dorrestein, PhD, assistant professor at UC San Diego’s Skaggs School of Pharmacy and Pharmaceutical Sciences, and colleagues describe an approach they developed to describe how bacteria interface with other bacteria in a laboratory setting. Dorrestein and post-doctoral students Yu-Liang Yang and Yuquan Xu, along with Paul Straight from Texas A&M University, utilized technology called natural product MALDI-TOF (Matrix Assisted Laser Desorption Ionization-Time of Flight) imaging mass spectrometry to uniquely translate the language of bacteria.

Microbial interactions, such as signaling, have generally been considered by scientists in terms of an individual, predominant chemical activity. However, a single bacterial species is capable of producing many bioactive compounds that can alter neighboring organisms. The approach developed by the UCSD research team enabled them to observe the effects of multiple microbial signals in an interspecies interaction, revealing that chemical “conversations” between bacteria involve many signals that function simultaneously.

“Scientists tend to study the metabolic exchange of bacteria, for example penicillin, one molecule at a time,” said Dorrestein. “Actually, such exchanges by microbes are much more complex, involving 10, 20 or even 50 molecules at one time. Now scientists can capture that complexity.”

The researchers anticipate that this tool will enable development of a bacterial dictionary that translates the output signals. “Our ability to translate the metabolic output of microbes is becoming more important, as they outnumber other cells in our body by a 10 to one margin,” Dorrestein explain. “We want to begin to understand how those bacteria interact with our cells. This is a powerful tool that may ultimately aid in understanding these interactions.”

In order to communicate, bacteria secrete molecules that tell other microbes, in effect, “I am irritated, stop growing,” “I need more nutrients” or “come closer, I can supply you with nutrients.” Other molecules are secreted that may turn off the body’s defense mechanisms. The team is currently mapping hundreds of such bacterial interactions. Their hope is that this approach will also enable them to translate these bacterial-mediated mechanisms in the future.

Understanding the means by which microorganism cells talk to one another will facilitate therapeutic discovery, according to Dorrestein. For instance, knowing how microbes interact with human immune cells could lead to discovery of novel immune system modulators, and how these molecules control bacterial growth may lead to new anti-invectives. Both are active areas of investigation in his laboratory.

Support was provided by the National Institutes of Health and the Beckman Foundation.

Debra Kain | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>