Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists View Effect of Whisker Tickling on Mouse Brains

03.02.2015

New technique allows scientists to track proteins known to create memories

Researchers at The Johns Hopkins University have succeeded in peering into the brains of live mice with such precision that they were able to see how the position of specific proteins changed as memories were forged. The technique has broad applications for future studies on learning and on what goes wrong in disorders like autism, Alzheimer’s disease and schizophrenia.


Yong Zhang

A single nerve cell in the cortex of a live mouse. Individual branches are pseudo-colored to differentiate them. The bumps on the branches are where synapses form. Cell body, white.

A report on the research will be published Feb. 2 in the journal Nature Neuroscience.

“As far as we know, no one has ever been able to look at receptor proteins in live animals before,” says Richard Huganir, Ph.D., professor and director of the Department of Neuroscience at the Johns Hopkins University School of Medicine. “This allows us to get a more accurate picture of what’s really happening as the brain processes experiences into memories.”

At the heart of the story are AMPA receptors, which are proteins that live on the outside of nerve cells and receive signals in the form of AMPA molecules. AMPA receptors play an important role in strengthening and weakening synapses, or the connections between nerve cells that form memories. Up until now, scientists were limited to studying AMPA receptors in nerve cells grown in the laboratory or in tissue samples, but neither of those methods could preserve the complex circuitry, hormones and neurochemicals of a living brain.

To solve that problem, Huganir’s team, led by postdoctoral fellow Yong Zhang, Ph.D., created mice whose AMPA receptors would glow under the light of a special microscope. Because the microscope can focus at a depth of 0.5 millimeters, it can peer into the outer layer of the brain, called the cortex. There, thousands of nerve cells carry information from every part of the body, and each whisker has a whole group of dedicated nerve cells called barrel fields.

The team imaged the mice immediately before and after they tickled a single whisker on each mouse for an hour. What they saw surprised them: Tickling alone was sufficient to increase the number of AMPA receptors in and strengthen the synapses of the barrel fields of the tickled whiskers. Checking back over the next few days, the researchers found that the AMPA receptor levels remained high, suggesting that the whisker-tickling experience had a long-term effect on the mice’s memories.

“The mysteries are the purpose that is served by strengthening these synapses, and whether more AMPA receptors are being made or if they are moving in from somewhere else,” says Zhang. “Future studies will address those questions.”

Huganir says: “This technique opens up many more possibilities, like visualizing learning at the molecular level as it is happening in the intact brain in healthy mice and in mouse models of brain disorders.”

The group first plans to apply the new technique to see what happens as mice learn a complex motor task. With better optics, they also hope to one day be able to go deeper into the brain to areas like the hippocampus, which has a crucial role in memory formation and has been implicated in neurological disorders like autism, Alzheimer’s disease and schizophrenia.

Other authors of the report include Robert Cudmore, Da-Ting Lin and David Linden of the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Institute of Mental Health (P50MH100024 and R01MH051106) and the Howard Hughes Medical Institute.

Contact Information
Catherine Kolf
Senior Communications Specialist
ckolf@jhmi.edu
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise
Further information:
http://www.jhmi.edu

Further reports about: AMPA receptors Brains Johns Hopkins Medicine Mouse Schizophrenia disorders nerve cells proteins synapses

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>