Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists View Effect of Whisker Tickling on Mouse Brains

03.02.2015

New technique allows scientists to track proteins known to create memories

Researchers at The Johns Hopkins University have succeeded in peering into the brains of live mice with such precision that they were able to see how the position of specific proteins changed as memories were forged. The technique has broad applications for future studies on learning and on what goes wrong in disorders like autism, Alzheimer’s disease and schizophrenia.


Yong Zhang

A single nerve cell in the cortex of a live mouse. Individual branches are pseudo-colored to differentiate them. The bumps on the branches are where synapses form. Cell body, white.

A report on the research will be published Feb. 2 in the journal Nature Neuroscience.

“As far as we know, no one has ever been able to look at receptor proteins in live animals before,” says Richard Huganir, Ph.D., professor and director of the Department of Neuroscience at the Johns Hopkins University School of Medicine. “This allows us to get a more accurate picture of what’s really happening as the brain processes experiences into memories.”

At the heart of the story are AMPA receptors, which are proteins that live on the outside of nerve cells and receive signals in the form of AMPA molecules. AMPA receptors play an important role in strengthening and weakening synapses, or the connections between nerve cells that form memories. Up until now, scientists were limited to studying AMPA receptors in nerve cells grown in the laboratory or in tissue samples, but neither of those methods could preserve the complex circuitry, hormones and neurochemicals of a living brain.

To solve that problem, Huganir’s team, led by postdoctoral fellow Yong Zhang, Ph.D., created mice whose AMPA receptors would glow under the light of a special microscope. Because the microscope can focus at a depth of 0.5 millimeters, it can peer into the outer layer of the brain, called the cortex. There, thousands of nerve cells carry information from every part of the body, and each whisker has a whole group of dedicated nerve cells called barrel fields.

The team imaged the mice immediately before and after they tickled a single whisker on each mouse for an hour. What they saw surprised them: Tickling alone was sufficient to increase the number of AMPA receptors in and strengthen the synapses of the barrel fields of the tickled whiskers. Checking back over the next few days, the researchers found that the AMPA receptor levels remained high, suggesting that the whisker-tickling experience had a long-term effect on the mice’s memories.

“The mysteries are the purpose that is served by strengthening these synapses, and whether more AMPA receptors are being made or if they are moving in from somewhere else,” says Zhang. “Future studies will address those questions.”

Huganir says: “This technique opens up many more possibilities, like visualizing learning at the molecular level as it is happening in the intact brain in healthy mice and in mouse models of brain disorders.”

The group first plans to apply the new technique to see what happens as mice learn a complex motor task. With better optics, they also hope to one day be able to go deeper into the brain to areas like the hippocampus, which has a crucial role in memory formation and has been implicated in neurological disorders like autism, Alzheimer’s disease and schizophrenia.

Other authors of the report include Robert Cudmore, Da-Ting Lin and David Linden of the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Institute of Mental Health (P50MH100024 and R01MH051106) and the Howard Hughes Medical Institute.

Contact Information
Catherine Kolf
Senior Communications Specialist
ckolf@jhmi.edu
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise
Further information:
http://www.jhmi.edu

Further reports about: AMPA receptors Brains Johns Hopkins Medicine Mouse Schizophrenia disorders nerve cells proteins synapses

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>