Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists View Effect of Whisker Tickling on Mouse Brains

03.02.2015

New technique allows scientists to track proteins known to create memories

Researchers at The Johns Hopkins University have succeeded in peering into the brains of live mice with such precision that they were able to see how the position of specific proteins changed as memories were forged. The technique has broad applications for future studies on learning and on what goes wrong in disorders like autism, Alzheimer’s disease and schizophrenia.


Yong Zhang

A single nerve cell in the cortex of a live mouse. Individual branches are pseudo-colored to differentiate them. The bumps on the branches are where synapses form. Cell body, white.

A report on the research will be published Feb. 2 in the journal Nature Neuroscience.

“As far as we know, no one has ever been able to look at receptor proteins in live animals before,” says Richard Huganir, Ph.D., professor and director of the Department of Neuroscience at the Johns Hopkins University School of Medicine. “This allows us to get a more accurate picture of what’s really happening as the brain processes experiences into memories.”

At the heart of the story are AMPA receptors, which are proteins that live on the outside of nerve cells and receive signals in the form of AMPA molecules. AMPA receptors play an important role in strengthening and weakening synapses, or the connections between nerve cells that form memories. Up until now, scientists were limited to studying AMPA receptors in nerve cells grown in the laboratory or in tissue samples, but neither of those methods could preserve the complex circuitry, hormones and neurochemicals of a living brain.

To solve that problem, Huganir’s team, led by postdoctoral fellow Yong Zhang, Ph.D., created mice whose AMPA receptors would glow under the light of a special microscope. Because the microscope can focus at a depth of 0.5 millimeters, it can peer into the outer layer of the brain, called the cortex. There, thousands of nerve cells carry information from every part of the body, and each whisker has a whole group of dedicated nerve cells called barrel fields.

The team imaged the mice immediately before and after they tickled a single whisker on each mouse for an hour. What they saw surprised them: Tickling alone was sufficient to increase the number of AMPA receptors in and strengthen the synapses of the barrel fields of the tickled whiskers. Checking back over the next few days, the researchers found that the AMPA receptor levels remained high, suggesting that the whisker-tickling experience had a long-term effect on the mice’s memories.

“The mysteries are the purpose that is served by strengthening these synapses, and whether more AMPA receptors are being made or if they are moving in from somewhere else,” says Zhang. “Future studies will address those questions.”

Huganir says: “This technique opens up many more possibilities, like visualizing learning at the molecular level as it is happening in the intact brain in healthy mice and in mouse models of brain disorders.”

The group first plans to apply the new technique to see what happens as mice learn a complex motor task. With better optics, they also hope to one day be able to go deeper into the brain to areas like the hippocampus, which has a crucial role in memory formation and has been implicated in neurological disorders like autism, Alzheimer’s disease and schizophrenia.

Other authors of the report include Robert Cudmore, Da-Ting Lin and David Linden of the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Institute of Mental Health (P50MH100024 and R01MH051106) and the Howard Hughes Medical Institute.

Contact Information
Catherine Kolf
Senior Communications Specialist
ckolf@jhmi.edu
Phone: 443-287-2251
Mobile: 443-440-1929

Catherine Kolf | newswise
Further information:
http://www.jhmi.edu

Further reports about: AMPA receptors Brains Johns Hopkins Medicine Mouse Schizophrenia disorders nerve cells proteins synapses

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>