Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use unmanned aerial vehicle to study gray whales from above

29.05.2015

A rare opportunity to study how the environment limits the growth of a recovered population of large whales

One recent spring day, John Durban, a NOAA Fisheries marine mammal biologist, stood on the California coast and launched an unmanned aerial vehicle into the air.


A gray whale and her calft migrate north along the California coast on their way to summer feeding grounds in the Arctic.

Credit: NOAA

The hexacopter--so called because it has six helicopter-type rotors--zipped over the ocean and hovered above a gray whale mother and her calf. The pair was migrating north from their calving grounds off Baja California, Mexico, to their summer feeding grounds in the Arctic.

NOAA Fisheries scientists have stood at this point of land each year for the past 22 years, binoculars in hand, to estimate the number of gray whale calves born each year.

That's an important step in monitoring the ups and downs of the population. But scientists would like to understand more completely what causes those ups and downs, and this year, with the addition of the hexacopter, they hope to find out.

As the hubcap-sized hexacopter hovered high above the whales it shot straight-down photos from a digital camera mounted in its belly. In addition to a camera, the hexacopter also carried a very precise pressure altimeter, allowing scientists to know the exact altitude at which each image was taken. Later in the lab, they would analyze the images, measuring the length and girth of the whales to within a few centimeters.

"We can't put a gray whale on a scale, but we can use aerial images to analyze their body condition--basically, how fat or skinny they are," Durban said.

Durban and co-pilot Holly Fearnbach, also a NOAA Fisheries scientist, would ultimately capture images of more than 60 cow/calf pairs.

A Long and Difficult Journey

The amount of fat on a gray whale cow is critical to the survival of her calf. Gray whales don't feed during most of their months-long migration, and while the mothers are fasting, they're also nursing their fast-growing calves. Therefore they need a lot of blubber to fuel the journey to their Arctic feeding grounds.

How much blubber they're carrying depends in part on conditions in the Arctic the summer before. If the whales had access to plentiful prey, the cows will have sufficient fat on them, and most calves will likely survive the journey. But if conditions weren't favorable, fewer calves will be born, and fewer still will make it.

"By studying the body condition of females, we hope to connect the dots between conditions in the Arctic one year and calf production the next," Durban said. "Ultimately, we're trying to understand how environmental conditions affect the reproductive success of the population."

Throughout the study, scientists kept the hexacopter at least 120 feet above the whales. When used at this altitude by trained scientists, unmanned aerial vehicles offer a safe and non-invasive way to collect important data on marine mammals and other protected species.

A Recovery Success Story

Gray whales were hunted nearly to extinction during the whaling days. Thanks to legal protections, the U.S. population of gray whales recovered and was taken off the endangered species list in 1994 (though a second population of gray whales on the Russian side of the Pacific remains endangered).

This success presents scientists with a unique opportunity to study the ecology of large whales, including how environmental conditions put an upper limit on population growth. Because most other large whales are still threatened or endangered, scientists have had few opportunities to observe these dynamics in action.

"With gray whales, we're just beginning to understand what a recovered population of large whales looks like," Durban said.

This understanding will help scientists set recovery goals for other species. And once a species is recovered, it will help scientists distinguish between normal ups and downs in a population and signs of--should it happen--a more serious decline.

"We'll have to get used to seeing recovered populations have good years and bad years," Durban said. "That's what happens when you've recovered and you're hovering around a food ceiling."

As the sun descended toward the horizon, Durban brought the hexacopter in for the day's final landing. He still had a lot of work in front of him, minutely analyzing images on a computer screen. Though all the images from this study would be of gray whales, other species of large whale are also showing promising signs of recovery.

"Hopefully in the not-too-distant future," Durban said, "there will be many healthy populations of large whales to study."

Media Contact

Jim Milbury
jim.milbury@noaa.gov
562-980-4006

 @NOAAFisheries

http://www.nmfs.noaa.gov 

Jim Milbury | EurekAlert!

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>