Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists unveil mechanism for ‘up and down’ in plants

VIB researchers at Ghent University discovered how the transport of an important plant hormone is organized in a way that the plant knows in which direction its roots and leaves have to grow.

They discovered how the needed transport protein turns up at the underside of plant cells. The discovery helps us to understand how plants grow, and how they organize themselves in order to grow. The scientific journal Nature published the news in advance on its website.

Versatile hormone

It is known for a long time that the plant hormone auxin is transmitted from the top to the bottom of a plant, and that the local concentration of auxin is important for the growth direction of stems, the growth of roots, the sprouting of shoots. To name a few things; auxin is also relevant to, for instance, the ripening of fruit, the clinging of climbers and a series of other processes. Thousands of researchers try to understand the different roles of auxin.

In many instances the distribution of auxin in the plant plays a key role, and thus the transport from cell to cell. At the bottom of plant cells, so-called PIN proteins are located on the cell membrane, helping auxin to flow through to the lower cell. However, no one thoroughly understood why the PIN proteins only showed up at the bottom of a cell.


An international group of scientists from labs in five countries, headed by Jirí Friml of the VIB-department Plant Systems Biology at Ghent University, revealed a rather unusual mechanism. PIN proteins are made in the protein factories of the cell and are transported all over the cell membrane. Subsequently they are engulfed by the cell membrane, a process called endocytosis. The invagination closes to a vesicle, disconnects and moves back into the cell. Thus the PIN proteins are recycled and subsequently transported to the bottom of the cell, where they are again incorporated in the cell membrane. It is unclear why plants use such a complex mechanism, but a plausible explanation is this mechanism enables a quick reaction when plant cells feel a change of direction of gravity, giving them a new ‘underside’.

Gene technology

To see the path of the protein, the researchers used gene technology to make cells in which the PIN protein was linked to fluorescent proteins. (This technology was rewarded with the Nobel Prize 2008 for chemistry.) Subsequently they produced cells in which the endocytosis was disrupted in two different ways.

The PIN proteins showed up all over the cell membrane. When the researchers proceeded from single cells to plant embryos, the embryos developed deformations, because the pattern of auxin concentrations in the embryo was distorted. When these plants with disrupted endocytosis grew further, roots developed where the first leaflet should have been.

Inge Geysen | alfa
Further information:

Further reports about: Auxin Embryo Membrane PIN PIN proteins Protein Versatile hormone cell membrane endocytosis plant cells

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>