Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unravel the cause of rare genetic disease: Goldman-Favre Syndrome explained

01.09.2011
New research in the FASEB Journal provides insight into the molecular basis of one form of retinal degeneration, Enhanced S-Cone Syndrome also known as Goldman-Favre Syndrome

Bethesda, MD—A new research report published in The FASEB Journal (https://www.fasebj.org) will help ophthalmologists and scientists better understand a rare genetic disease that causes increased susceptibility to blue light, night blindness, and decreased vision called Enhanced S-Cone Syndrome or Goldman-Favre Syndrome. In the report, scientists found that the expression of genes responsible for the healthy renewal of rods and cones in the retina was reduced and that this problem originates in the photoreceptors themselves rather than in the adjacent retinal pigment epithelial layer as once thought.

"This research could help identify therapeutic agents that would prevent, ameliorate or possibly cure these blinding diseases related to defective renewal of retinal cells," said Krzysztof Palczewski, Ph.D., a senior scientist involved in the research and an editorial board member of The FASEB Journal from the Department of Pharmacology in the School of Medicine at Case Western Reserve University, in Cleveland, Ohio. "It is possible that during aging, this process is slowed and such intervention could be important for determining diseases such as age-related macular degeneration."

To make this discovery, researchers studied both human ESCS patients and an ESCS mouse model. They found that phagocytosis, a process that allows for the normal and continual renewal of rods and cones in the retina, was defective. Using RNA-sequencing to identify differences in complete transcriptomes, and cell culture techniques, scientists demonstrated that the phagocytotic defect was due to the ESCS photoreceptors themselves, rather than the adjacent retinal pigment epithelium layer that also is involved in photoreceptor phagocytosis.

"Learning what goes wrong in rare diseases like Enhanced S-Cone Syndrome allows us to understand how vision works at the molecular level," said Gerald Weissmann, M.D., Editor-in-Chief of The FASEB Journal. "This study provides valuable insight into how the eye renews its photoreceptor cells. Knowing that photoreceptor cells affect their own renewal will surely have an impact on other, more common, forms of retinal degeneration."

According to the U.S. National Institutes of Health Office of Rare Diseases, Enhanced S-Cone Syndrome is an inherited eye disease that affects the retina. Within the retina are "red," "blue," and "green" cones allowing people to see colors properly; and rods which allows us to see in dim light. People with Enhanced S-Cone Syndrome are born with an overabundance of blue cones, reduced numbers of red and green cones, and few, if any, functional rods. This leads to an increased sensitivity to blue light, varying degrees of red and green cone vision, night blindness occurring from early life, vision loss, and retinal degeneration.

Receive monthly highlights from The FASEB Journal by e-mail. Sign up at http://www.faseb.org/fjupdate.aspx. The FASEB Journal (http://www.fasebj.org) is published by the Federation of the American Societies for Experimental Biology (FASEB) and celebrates its 25th anniversary in 2011. Over the past quarter century, the journal has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century and is the most cited biology journal worldwide according to the Institute for Scientific Information.

FASEB comprises 23 societies with more than 100,000 members, making it the largest coalition of biomedical research associations in the United States. FASEB enhances the ability of scientists and engineers to improve—through their research—the health, well-being and productivity of all people. FASEB's mission is to advance health and welfare by promoting progress and education in biological and biomedical sciences through service to our member societies and collaborative advocacy.

Details: Debarshi Mustafi, Brian M. Kevany, Christel Genoud, Kiichiro Okano, Artur V. Cideciyan, Alexander Sumaroka, Alejandro J. Roman, Samuel G. Jacobson, Andreas Engel, Mark D. Adams, and Krzysztof Palczewski. Defective photoreceptor phagocytosis in a mouse model of enhanced S-cone syndrome causes progressive retinal degeneration. FASEB J September 2011 25:3157-3176, doi:10.1096/fj.11-186767 ; http://www.fasebj.org/content/25/9/3157.abstract

Cody Mooneyhan | EurekAlert!
Further information:
http://www.fasebj.org

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>