Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unravel the mystery of marine methane oxidation

13.11.2012
Researchers uncover how microorganisms on the ocean floor protect the atmosphere against methane

Microbiologists and geochemists from the Max Planck Institute for Marine Microbiology, along with their colleagues from Vienna and Mainz, show that marine methane oxidation coupled to sulfate respiration can be performed by a single microorganism, a member of the ancient kingdom of the Archaea, and does not need to be carried out in collaboration with a bacterium, as previously thought. They published their discovery as an article in the renowned scientific journal Nature.


The enrichment of the microorganisms responsible for marine AOM, archaea in red and bacteria in green from the Isis Mud Volcano in the Mediterranean Sea has taken 8 years of continuous incubation. Without these cultures it would not have been possible to trace down the complex sulfur cycling involved in AOM.

© Jana Milucka, MPI f. Marine Microbiology


In this model, methane oxidation and sulfate respiration to elemental sulfur (or all the way to sulfide) is performed by the methanotrophic archaea (ANME). The associated bacteria (DSS) are disproportionators (sulfur fermentors), which take up produced elemental sulfur in the form of disulfide and turn it into sulfate and sulfide. Dark circles represent iron- and phosphorus-rich precipitates found in the bacteria.

© Jana Milucka, MPI f. Marine Microbiology

Vast amounts of methane are stored under the ocean floor. Anaerobic oxidation of methane coupled to sulfate respiration (AOM) prevents the release of this potent greenhouse gas into the atmosphere. Although the process was discovered 35 years ago it has remained a long standing mystery as to how microorganisms perform this reaction. A decade ago, an important discovery was made which showed that two different microorganisms are often associated with AOM. It was proposed that these two microorganisms perform different parts of the AOM reaction. One, an archaeon, was supposed to oxidize methane and the other, a bacterium, was supposed to respire sulfate. This implied the existence of an intermediate compound to be shuttled from the methane oxidizer to the sulfate respirer.

Now, the team around Professor Kuypers has turned this whole model on its head. They show that the archaeon not only oxidizes methane but can also respire sulfate and does not necessarily need the bacterial partner. It appears that the archaeon does not employ the common enzyme toolbox that other known sulfate-respiring microorganisms use, but relies on a different, unknown pathway.

The basis for this dramatic shift in thinking is the observation that elemental sulfur is formed and accumulates in the methane-oxidizing archaeon. “Using chromatographic and state-of-the-art spectroscopic techniques we found surprisingly high concentrations of elemental sulfur in our cultures”, says Professor Marcel Kuypers and adds: “The single-cell techniques showed that the sulfur content in the methane-degrading archaeon was much higher than in the bacterium. Our experiments show that this sulfur is formed during sulfate respiration.”
This finding begs the question: What does the bacterium do if the archaeon does both sulfate respiration and methane oxidation? “The bacteria actually make a living off of the elemental sulfur produced by the archaea”, explains Jana Milucka, first author of the study. “The bacteria grow by splitting the elemental sulfur into sulfate and hydrogen sulfide. This is a form of fermentation, like the process that produces alcohol.”

“Until now we have always had trouble explaining the occurrence of elemental sulfur in oxygen-free sediments”, notes Tim Ferdelman, scientist at the MPI Bremen and coauthor on the publication. ”Our discoveries not only provide a mechanism for marine methane oxidation but also cast a new light on the carbon and sulfur cycling in marine, methane-rich sediments.”

Contact

Dr. Marcel Kuypers
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-602
Fax: +49 421 2028-690
Email: mkuypers@­mpi-bremen.de
Dr. Rita Dunker
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-856
Fax: +49 421 2028-790
Email: rdunker@­mpi-bremen.de
Dr. Manfred Schlösser
Press Officer
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 4 212028-704
Email: mschloes@­mpi-bremen.de

Original publication
Jana Milucka, Timothy G. Ferdelman, Lubos Polerecky, Daniela Franzke, Gunter Wegener, Markus Schmid, Ingo Lieberwirth, Michael Wagner, Friedrich Widdel, Marcel M. M. Kuypers
Zerovalent sulfur is a key intermediate in marine methane oxidation
Nature, 2012. 8 November, 2012. Doi: 10.1038/nature11656

Dr. Marcel Kuypers | Max-Planck-Institut
Further information:
http://www.mpg.de/6619070/marine-methane-oxidation

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>