Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unravel the mystery of marine methane oxidation

13.11.2012
Researchers uncover how microorganisms on the ocean floor protect the atmosphere against methane

Microbiologists and geochemists from the Max Planck Institute for Marine Microbiology, along with their colleagues from Vienna and Mainz, show that marine methane oxidation coupled to sulfate respiration can be performed by a single microorganism, a member of the ancient kingdom of the Archaea, and does not need to be carried out in collaboration with a bacterium, as previously thought. They published their discovery as an article in the renowned scientific journal Nature.


The enrichment of the microorganisms responsible for marine AOM, archaea in red and bacteria in green from the Isis Mud Volcano in the Mediterranean Sea has taken 8 years of continuous incubation. Without these cultures it would not have been possible to trace down the complex sulfur cycling involved in AOM.

© Jana Milucka, MPI f. Marine Microbiology


In this model, methane oxidation and sulfate respiration to elemental sulfur (or all the way to sulfide) is performed by the methanotrophic archaea (ANME). The associated bacteria (DSS) are disproportionators (sulfur fermentors), which take up produced elemental sulfur in the form of disulfide and turn it into sulfate and sulfide. Dark circles represent iron- and phosphorus-rich precipitates found in the bacteria.

© Jana Milucka, MPI f. Marine Microbiology

Vast amounts of methane are stored under the ocean floor. Anaerobic oxidation of methane coupled to sulfate respiration (AOM) prevents the release of this potent greenhouse gas into the atmosphere. Although the process was discovered 35 years ago it has remained a long standing mystery as to how microorganisms perform this reaction. A decade ago, an important discovery was made which showed that two different microorganisms are often associated with AOM. It was proposed that these two microorganisms perform different parts of the AOM reaction. One, an archaeon, was supposed to oxidize methane and the other, a bacterium, was supposed to respire sulfate. This implied the existence of an intermediate compound to be shuttled from the methane oxidizer to the sulfate respirer.

Now, the team around Professor Kuypers has turned this whole model on its head. They show that the archaeon not only oxidizes methane but can also respire sulfate and does not necessarily need the bacterial partner. It appears that the archaeon does not employ the common enzyme toolbox that other known sulfate-respiring microorganisms use, but relies on a different, unknown pathway.

The basis for this dramatic shift in thinking is the observation that elemental sulfur is formed and accumulates in the methane-oxidizing archaeon. “Using chromatographic and state-of-the-art spectroscopic techniques we found surprisingly high concentrations of elemental sulfur in our cultures”, says Professor Marcel Kuypers and adds: “The single-cell techniques showed that the sulfur content in the methane-degrading archaeon was much higher than in the bacterium. Our experiments show that this sulfur is formed during sulfate respiration.”
This finding begs the question: What does the bacterium do if the archaeon does both sulfate respiration and methane oxidation? “The bacteria actually make a living off of the elemental sulfur produced by the archaea”, explains Jana Milucka, first author of the study. “The bacteria grow by splitting the elemental sulfur into sulfate and hydrogen sulfide. This is a form of fermentation, like the process that produces alcohol.”

“Until now we have always had trouble explaining the occurrence of elemental sulfur in oxygen-free sediments”, notes Tim Ferdelman, scientist at the MPI Bremen and coauthor on the publication. ”Our discoveries not only provide a mechanism for marine methane oxidation but also cast a new light on the carbon and sulfur cycling in marine, methane-rich sediments.”

Contact

Dr. Marcel Kuypers
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-602
Fax: +49 421 2028-690
Email: mkuypers@­mpi-bremen.de
Dr. Rita Dunker
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 421 2028-856
Fax: +49 421 2028-790
Email: rdunker@­mpi-bremen.de
Dr. Manfred Schlösser
Press Officer
Max Planck Institute for Marine Microbiology, Bremen
Phone: +49 4 212028-704
Email: mschloes@­mpi-bremen.de

Original publication
Jana Milucka, Timothy G. Ferdelman, Lubos Polerecky, Daniela Franzke, Gunter Wegener, Markus Schmid, Ingo Lieberwirth, Michael Wagner, Friedrich Widdel, Marcel M. M. Kuypers
Zerovalent sulfur is a key intermediate in marine methane oxidation
Nature, 2012. 8 November, 2012. Doi: 10.1038/nature11656

Dr. Marcel Kuypers | Max-Planck-Institut
Further information:
http://www.mpg.de/6619070/marine-methane-oxidation

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>