Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists unmask genetic markers associated with psoriasis

27.01.2009
University of Michigan scientists reveal DNA 'hotspots' linked to psoriasis

Scientists at the University of Michigan Department of Dermatology, the U-M School of Public Health and their collaborators have found DNA "hotspots" that may reveal how genetic differences among individuals result in psoriasis, an autoimmune disease of the skin. Published in Nature Genetics, the findings could lead to new drug targets and tailored treatments for the disease.

"This discovery highlights the role of several genes in mediating the immune responses that result in psoriasis," says Goncalo Abecasis, Ph.D., co-principal investigator on the project, and associate professor of biostatistics in the School of Public Health. "Some of the highlighted genes, like those in the IL-23 pathway are already targeted by effective psoriasis therapies. Others, like TNFAIP3 and TNIP1, may become targets for the psoriasis treatments of the future."

Psoriasis affects some 7.5 million people in the United States, causing sore, itchy patches of red, scaly skin. In many cases psoriasis is not only disfiguring; between 10 and 30 percent of patients develop psoriatic arthritis, a painful inflammation of the joints. Current treatments, including different types of immunosuppressive agents, aren't always effective, and they can cause serious side effects.

Psoriasis has a strong genetic component; a child with two affected parents has a 50 percent chance of developing it; siblings have a three- to six-fold risk. But the genes responsible for psoriasis haven't yet been completely understood.

In this large, multi-center study, researchers used cutting-edge genomic technology to identify subtle genetic signals influencing the risk of psoriasis. They scanned millions of DNA variations in the genome to find those that occur significantly more often in psoriasis patients than unaffected people.

The study was led by James Elder, M.D., Ph.D., a professor in the Department of Dermatology, and Abecasis. Among the first authors were Rajan Nair, Ph.D., assistant research professor of dermatology, and Jun Ding of the Biostatistics Department in the School of Public Health.

Within the past 18 months, researchers have increased the number of independent genetic "hotspots," or loci, confidently associated with psoriasis from one¡XHLA-Cw6, previously identified by Elder, et al., in 2006¡Xto 10. Four of these have been identified for the first time by this study, and two more have since been confirmed by these researchers.

Research details

The team looked for single nucleotide polymorphisms (SNPs), or DNA changes, at 438,670 sites in 1,359 psoriasis cases and 1,400 healthy controls. Initial scans signaled differences in at least three previously identified DNA sites, with HLA-Cw6 producing the strongest genetic signal. They then expanded the study to look at 18 of the most interesting loci in an additional 5,048 cases and 5,051 controls.

In all, seven of the 18 loci showed consistently strong association with psoriasis. As a result, four proteins produced from the altered DNA code now can be targeted for further study.

This study is the first to identify changes in the IL23A gene in psoriasis patients. Notably, two of the previously identified psoriasis genes (IL12B and IL23R) encode proteins that bind to IL23A protein. Variations in the structure any of these three genes may predispose people to chronic immune responses that ultimately result in psoriasis.

The team also found that genetic signals for proteins activated by TNF-ƒÑ, a key signaling molecule involved in inflammation, are distinct from the patterns in healthy controls. Two genes activated by TNF-ƒÑ¡XTNFAIP3 and TNIP1¡Xshow strong association with psoriasis. Together, these genes limit immune responses. Genetic alterations in this "brake" may allow the immune system to work overtime within the skin. Variants of TNFAIP3 also have been associated with rheumatoid arthritis and lupus, two other autoimmune conditions.

The fourth novel hotspot implicates two "next-door neighbor" genes, IL4 and IL13. These genes support development of Th2 cells, a type of immune system T cell. Any condition that leads to too few or too many Th2 cells in relation to other types of T cells may result in disease, including psoriasis.

This new research, together with recent immunology work by Elder and colleagues, links four psoriasis loci (IL12B, IL23A, IL23R and IL4/IL13) together in a common functional pathway.

Implications

The large library of genetic data increases the number of proteins and pathways that can be targeted by emerging therapies to fight psoriasis.

Once the full catalog of psoriasis genes has been identified, it may be possible to generate a "psoriasis gene profile" that can accurately predict one's risk of developing the disease. Such work may one day help assess risk of heart attack and stroke, since psoriasis carries an increased risk of coronary artery disease, and TNFAIP3 has also been shown to influence risk of coronary artery disease in mice.

The number of disease genes that can be identified more than triples if the study size can be increased two to three fold. "We invite participation of psoriasis patients from across the country," says Elder.

Katie Vloet | EurekAlert!
Further information:
http://www.umich.edu
http://www.psoriasis.umich.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>