Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Unlock Secret of Death Protein’s Activation

23.10.2008
Scientists at Dana-Farber Cancer Institute have identified a previously undetected trigger point on a naturally occurring "death protein" that helps the body get rid of unwanted or diseased cells.

They say it may be possible to exploit the newly found trigger as a target for designer drugs that would treat cancer by forcing malignant cells to commit suicide.

Loren Walensky, MD, PhD, pediatric oncologist and chemical biologist at Dana-Farber and Children's Hospital Boston, and colleagues report in the Oct. 23 issue of the journal Nature that they directly activated this trigger on the "executioner" protein BAX, killing laboratory cells by setting in motion their self-destruct mechanism.

The researchers fashioned a peptide (a protein subunit) that precisely matched the shape of the newly found trigger site on the killer protein, which lies dormant in the cell’s interior until activated by cellular stress. When the peptide docked into the binding site, BAX was spurred into assassin mode. The activated BAX proteins flocked to the cell's power plants, the mitochondria, where they poked holes in the mitochondria’s membranes, killing the cells. This process is called apoptosis, or programmed cell death.

"We identified a switch that turns BAX on, and we believe this discovery can be used to develop drugs that turn on or turn off cell death in human disease by targeting BAX," said Walensky, who is also an assistant professor of pediatrics at Harvard Medical School.

BAX is one of about two dozen proteins known collectively as the BCL-2 family. The proteins interact in various combinations leading to either the survival of a cell or its programmed self-destruction. Cancer cells have an imbalance of BCL-2 family signals that drives them to survive instead of dying on command.

The late Stanley Korsmeyer, MD, an apoptosis research pioneer and Walensky's Dana-Farber mentor, had suggested that killer proteins like BAX could be activated directly by "death domains," termed BH3, contained within a subset of BCL-2 family proteins. He hypothesized that this activating interaction was a fleeting "hit-and-run" event, making it especially challenging for scientists to study the phenomenon.

As suspected, the proposed BAX-activating interactions could not be captured by traditional methods. "When you tried to measure binding of the BH3 subunits to BAX, you couldn't detect the interaction," explained Walensky. He recognized, however, that the BH3 peptides being used in the laboratory didn't retain the coiled shape of the natural BH3 domains that participate in BCL-2 family protein interactions. Walensky and his colleagues pioneered the design of "stapled" BH3 peptides, which contain a chemical crosslink that locks the peptides into their natural coiled shape. With biologically active shape restored, the stapled BH3 peptides bound directly to BAX and triggered its killer activity.

Defining how the activating peptides docked on BAX remained a formidable catch-22. In order to solve the structure of an interaction complex, it needed to be stable enough for analysis. In this case, the BH3 binding event itself triggers BAX to change its shape and self-associate to perform its killer function, rendering the activating interaction unstable by definition.

What if, Walensky proposed, you could set up the interaction of BH3 and BAX under laboratory conditions that caused it to be more stable or proceed in slow motion? The plan was to adjust the potency of the stapled BH3 peptide so that, according to Walensky, "it was good enough to bind BAX, yet activate it just a bit more slowly so that we could actually study the interaction." The researchers would then look for any detectable shift in the three-dimensional structure of the BAX protein to help point them to the docking site.

The researchers used nuclear magnetic resonance (NMR) spectroscopy to monitor the arrangement of atoms in the protein. First authors of the Nature paper Evripidis Gavathiotis, PhD, of Walensky’s laboratory and Motoshi Suzuki, PhD, of Nico Tjandra, PhD,'s laboratory at the National Institutes of Health, succeeded in generating pure BAX protein that could be put into solution with the stapled BH3 peptide -- the latter in increasing concentrations until it initiated a BH3-BAX interaction. Gavathiotis and Suzuki used the NMR technique to spot a group of BAX amino acids, the building blocks of proteins, which were affected by the addition of the stapled BH3 peptide.

"The discrete subset of amino acids that shifted upon exposure to the stapled BH3 peptide mapped to a completely unanticipated location on BAX," said Walensky. The long-elusive binding site on BAX that initiates its killer activity was revealed. "Because BAX lies at the crossroads of the cell's decision to live or die, drugs that directly activate BAX could kill diseased cells like in cancer and BAX-blocking drugs could potentially prevent unwanted cell death, such as in heart attack, stroke, and neurodegeneration," said Walensky.

Additional authors include Marguerite Davis, Kenneth Pitter, Gregory Bird, PhD, and Samuel Katz, MD, PhD, of Dana-Farber, and Ho-Chou Tu, Hyungjin Kim, and Emily H.-Y. Cheng, MD, PhD, of Washington University School of Medicine, St. Louis.

The research was supported, in part, by a grant from the National Institutes of Health.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute.

Bill Schaller | Newswise Science News
Further information:
http://www.dana-farber.org
http://www.dfci.harvard.edu/abo/news/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>