Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover shared phosphoproteome linking remote plant species

19.07.2010
A database released by RIKEN and Keio University researchers has information on over three thousand phosphorylated proteins and phosphorylation sites in rice which opens new doors in the study and engineering of plants.

Researchers at RIKEN and Keio University have shown that even the most widely-varying species of plants share remarkable similarities in the composition of proteins in them that undergo phosphorylation, a regulatory mechanism involved in various cellular phenomena.

A database released by the group, with information on over three thousand phosphorylated proteins and phosphorylation sites in rice, opens new doors in the study and engineering of plants.

The addition of a phosphate group to a protein, known as phosphorylation, plays a vital role in regulating cellular phenomena and as a mediator of signaling pathways in the cell. The function of this process in regulating plant growth and development in particular makes it highly attractive for plant engineering, yet existing resources on phosphorylation are limited to model plants such as Arabidopsis, beyond which their applicability is unclear.

To expand the range of uses for these resources, the research group set out to determine the degree to which phosphorylation mechanisms are conserved across two very different plant species: Arabidopsis, from the family of flowering plants known as dicotyledons (dicots), and rice, from the family known as monocotyledons (monocots). Their large-scale analysis on rice, the first ever, identified a total of 3393 different types of proteins regulated by phosphorylation and their phosphorylation sites, of which more than half, they showed, are shared by Arabidopsis.

The surprising discovery that these two very different plants exhibit significant similarities in their mechanisms of phosphorylation suggests that information on the “phosphoproteome” of one species can be applied to others, greatly contributing to applications in plant engineering. Data leading to the discovery has been made available to the public in an open-access database, the Plant Phosphoproteome Database, released online on May 12.

For more information, please contact:

Dr. Ken Shirasu
Plant Immunity Research Group
RIKEN Plant Science Center (PSC)
Tel: +81-(0)45-503-9574 / Fax: +81-(0)45-503-9573
Dr. Hirofumi Nakagami
Plant Proteomics Research Unit
RIKEN Plant Science Center (PSC)
Tel: +81-(0)45-503-9424 / Fax: +81-(0)45-503-9573
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp
About the RIKEN Plant Science Center
With rapid industrialization and a world population set to top 9 billion within the next 30 years, the need to increase our food production capacity is more urgent today than it ever has been before. Avoiding a global crisis demands rapid advances in plant science research to boost crop yields and ensure a reliable supply of food, energy and plant-based materials.

The RIKEN Plant Science Center (PSC), located at the RIKEN Yokohama Research Institute in Yokohama City, Japan, is at the forefront of research efforts to uncover mechanisms underlying plant metabolism, morphology and development, and apply these findings to improving plant production. With laboratories ranging in subject area from metabolomics, to functional genomics, to plant regulation and productivity, to plant evolution and adaptation, the PSC’s broad scope grants it a unique position in the network of modern plant science research. In cooperation with universities, research institutes and industry, the PSC is working to ensure a stable supply of food, materials, and energy to support a growing world population and its pressing health and environmental needs.

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>