Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover secrets of potential bioterror virus

18.02.2009
Major virulence factor for Rift Valley fever virus found to have dual mechanism

Researchers at the University of Texas Medical Branch at Galveston have discovered a key tactic that the Rift Valley fever virus uses to disarm the defenses of infected cells.

The mosquito-borne African virus causes fever in humans, inflicting liver damage, blindness and even death on a small percentage of the people it infects. Rift Valley fever also afflicts cattle, goats and sheep, resulting in a nearly 100 percent abortion rate in these animals. Its outbreaks periodically cause economic devastation in parts of Kenya, Somalia, Sudan and Zimbabwe, and bioterrorism experts warn that its introduction to the United States would cripple the North American beef industry.

"It's really important to know how this virus causes disease, and that's what we're doing here, working to understand its pathogenicity at the molecular level," said assistant professor Tetsuro Ikegami, lead author of a paper on the discovery now appearing in PLoS Pathogens.

Ikegami and his collaborators focused on a viral protein called NSs. The protein was already known to be a major factor in making Rift Valley fever more virulent; earlier research had shown that it penetrated cell nuclei and disrupted the coding of RNA messages, including those ordering the production of the antiviral protein interferon beta.

"We didn't know what the mechanism was, but we suspected NSs had some additional function that would promote viral replication," Ikegami said. So — starting with an already weakened strain of Rift Valley fever virus produced as part of a vaccine development project — he created a genetically engineered form of the virus that lacked the genes for NSs.

Safety precautions make working with natural, "wild-type" Rift Valley fever virus difficult; at UTMB, investigations are restricted to a tightly secured biosafety level 4 lab, where researchers work in protective, full-body "spacesuits." By contrast, the vaccine strain of the virus that Ikegami modified, known as MP-12, can safely be handled inside a standard biosafety cabinet.

Using the NSs-free mutant virus to perform a series of cell-culture experiments, the researchers found that NSs does in fact have a second function. It attacks a protein called PKR, the beginning of a chain of biochemical reactions leading to the accumulation of a molecular complex known as phosphorylated eIF2-alpha. Phosphorylated eIF2-alpha suppresses overall protein production. Unblocked, it would prevent Rift Valley fever virus from using cellular protein synthesis machinery to make the proteins it needs to replicate itself. But since NSs prevents the phosphorylation of eIF2-alpha by taking out PKR, the virus is free to copy itself within host cells without interference.

"It's amazing that the virus evolved to use one protein to do two jobs, to use its very limited genetic information to perform these very different functions," said microbiology and immunology professor Shinji Makino, senior author of the paper. "It's really interesting, and it's also important, because these types of experiments are critical to learning how to control this virus."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>