Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover secrets of potential bioterror virus

18.02.2009
Major virulence factor for Rift Valley fever virus found to have dual mechanism

Researchers at the University of Texas Medical Branch at Galveston have discovered a key tactic that the Rift Valley fever virus uses to disarm the defenses of infected cells.

The mosquito-borne African virus causes fever in humans, inflicting liver damage, blindness and even death on a small percentage of the people it infects. Rift Valley fever also afflicts cattle, goats and sheep, resulting in a nearly 100 percent abortion rate in these animals. Its outbreaks periodically cause economic devastation in parts of Kenya, Somalia, Sudan and Zimbabwe, and bioterrorism experts warn that its introduction to the United States would cripple the North American beef industry.

"It's really important to know how this virus causes disease, and that's what we're doing here, working to understand its pathogenicity at the molecular level," said assistant professor Tetsuro Ikegami, lead author of a paper on the discovery now appearing in PLoS Pathogens.

Ikegami and his collaborators focused on a viral protein called NSs. The protein was already known to be a major factor in making Rift Valley fever more virulent; earlier research had shown that it penetrated cell nuclei and disrupted the coding of RNA messages, including those ordering the production of the antiviral protein interferon beta.

"We didn't know what the mechanism was, but we suspected NSs had some additional function that would promote viral replication," Ikegami said. So — starting with an already weakened strain of Rift Valley fever virus produced as part of a vaccine development project — he created a genetically engineered form of the virus that lacked the genes for NSs.

Safety precautions make working with natural, "wild-type" Rift Valley fever virus difficult; at UTMB, investigations are restricted to a tightly secured biosafety level 4 lab, where researchers work in protective, full-body "spacesuits." By contrast, the vaccine strain of the virus that Ikegami modified, known as MP-12, can safely be handled inside a standard biosafety cabinet.

Using the NSs-free mutant virus to perform a series of cell-culture experiments, the researchers found that NSs does in fact have a second function. It attacks a protein called PKR, the beginning of a chain of biochemical reactions leading to the accumulation of a molecular complex known as phosphorylated eIF2-alpha. Phosphorylated eIF2-alpha suppresses overall protein production. Unblocked, it would prevent Rift Valley fever virus from using cellular protein synthesis machinery to make the proteins it needs to replicate itself. But since NSs prevents the phosphorylation of eIF2-alpha by taking out PKR, the virus is free to copy itself within host cells without interference.

"It's amazing that the virus evolved to use one protein to do two jobs, to use its very limited genetic information to perform these very different functions," said microbiology and immunology professor Shinji Makino, senior author of the paper. "It's really interesting, and it's also important, because these types of experiments are critical to learning how to control this virus."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>