Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover secrets of potential bioterror virus

18.02.2009
Major virulence factor for Rift Valley fever virus found to have dual mechanism

Researchers at the University of Texas Medical Branch at Galveston have discovered a key tactic that the Rift Valley fever virus uses to disarm the defenses of infected cells.

The mosquito-borne African virus causes fever in humans, inflicting liver damage, blindness and even death on a small percentage of the people it infects. Rift Valley fever also afflicts cattle, goats and sheep, resulting in a nearly 100 percent abortion rate in these animals. Its outbreaks periodically cause economic devastation in parts of Kenya, Somalia, Sudan and Zimbabwe, and bioterrorism experts warn that its introduction to the United States would cripple the North American beef industry.

"It's really important to know how this virus causes disease, and that's what we're doing here, working to understand its pathogenicity at the molecular level," said assistant professor Tetsuro Ikegami, lead author of a paper on the discovery now appearing in PLoS Pathogens.

Ikegami and his collaborators focused on a viral protein called NSs. The protein was already known to be a major factor in making Rift Valley fever more virulent; earlier research had shown that it penetrated cell nuclei and disrupted the coding of RNA messages, including those ordering the production of the antiviral protein interferon beta.

"We didn't know what the mechanism was, but we suspected NSs had some additional function that would promote viral replication," Ikegami said. So — starting with an already weakened strain of Rift Valley fever virus produced as part of a vaccine development project — he created a genetically engineered form of the virus that lacked the genes for NSs.

Safety precautions make working with natural, "wild-type" Rift Valley fever virus difficult; at UTMB, investigations are restricted to a tightly secured biosafety level 4 lab, where researchers work in protective, full-body "spacesuits." By contrast, the vaccine strain of the virus that Ikegami modified, known as MP-12, can safely be handled inside a standard biosafety cabinet.

Using the NSs-free mutant virus to perform a series of cell-culture experiments, the researchers found that NSs does in fact have a second function. It attacks a protein called PKR, the beginning of a chain of biochemical reactions leading to the accumulation of a molecular complex known as phosphorylated eIF2-alpha. Phosphorylated eIF2-alpha suppresses overall protein production. Unblocked, it would prevent Rift Valley fever virus from using cellular protein synthesis machinery to make the proteins it needs to replicate itself. But since NSs prevents the phosphorylation of eIF2-alpha by taking out PKR, the virus is free to copy itself within host cells without interference.

"It's amazing that the virus evolved to use one protein to do two jobs, to use its very limited genetic information to perform these very different functions," said microbiology and immunology professor Shinji Makino, senior author of the paper. "It's really interesting, and it's also important, because these types of experiments are critical to learning how to control this virus."

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>