Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover protective mechanism against liver cancer

15.12.2009
A team of scientists from the UC San Diego School of Medicine and Osaka University A in Japan have identified a protein switch that helps prevent liver damage, including inflammation, fibrosis and cancer.

The findings suggest that a better understanding of how the protein, TAK1, works could lead to new insights into the development of liver disease and cancer.

"TAK1 appears to be a master regulator of liver function," said David A. Brenner, MD, professor of medicine and Dean of the UC San Diego School of Medicine. He and Ekihiro Seki, MD, PhD, assistant research scientist in the Department of Medicine, led the work. "Understanding its role in liver disease and cancer may eventually enable us to devise new therapeutic strategies." Their study appears on line the week of December 14 in advance of publication in the journal Proceedings of the National Academy of Sciences.

TAK1 is a kinase, a type of signaling protein involved in regulating various cell activities, including cell growth. Researchers have known that TAK1 activates two specific proteins, NF-kappaB and JNK, which are both involved in immunity, inflammation, programmed cell death and cancer. But NF-kappaB helps protect liver cells from dying and protects against cancer development. In contrast, JNK promotes cell death and cancer.

However, it has been unclear whether TAK1 promotes or prevents the development of liver cancer. To find out, Seki, Brenner and their group created a mouse model in which liver cells lacked the gene Tak1, which makes the TAK1 protein. In a series of experiments, they found a high rate of liver cell death in young animals lacking TAK1. The animals' livers then went into overdrive, producing too many liver cells to make up for the loss and causing liver damage, including inflammation and fibrosis – liver scarring – and eventually, cancer.

According to Seki, the study is the first to demonstrate the role of TAK1 in cancer development, and strongly suggests that the protein also contributes to cancer development in other organs. In addition, the liver cancer mouse model that the team developed is associated with sustained liver inflammation and fibrosis – key features of human liver cancer – and should be useful in investigating whether fibrosis influences liver cancer development.

"We can also use the model to test whether a potential cancer drug or therapy affects both fibrosis and cancer, or either one," Seki said. "This study will open a new therapeutic potential targeting the expression of TAK1 for liver cancer."

Additional contributors include Sayaka Inokuchi, Tomonori Aoyama, Kouichi Miura, Christoph H. Osterreicher, Yuzo Kodama, UCSD Department of Medicine; Katsumi Miyai, UCSD Department of Pathology; and Shizuo Akira, Osaka University.

This study was funded by grants from the American Association for the Study of Liver Diseases/American Liver Foundation, the National Institute on Alcohol Abuse and Alcoholism and the National Institutes of Health.

Steve Benowitz | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>