Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists uncover mode of action of enzyme linked with several types of cancer

08.06.2009
New study published in the journal Molecular Cell

Scientists at the Institute for Research in Immunology and Cancer (IRIC) of the Université de Montréal have discovered a key mechanism used by cells to efficiently distribute chromosomes to new cells during cell multiplication.

Published in the journal Molecular Cell, the study is the first to demonstrate that this mechanism relies on the polo kinase, an enzyme implicated in several cancers. Inhibiting this mechanism could be key to developing effective therapies to treat cancer.

Each human cell contains, in its nucleus, all the coding instructions necessary to direct the cell's activities. A complete set of those instructions is referred to as a genome. Cancer cells are capable of altering their genome in order to promote uncontrolled growth. "Cancer cells achieve this by gaining or losing specific chromosomes, or by inducing structural defects in their genome," explains Damien D'Amours, Principal Investigator at IRIC and director of the study, "We discovered that the polo kinase, overexpressed in a broad range of human tumours, tells the chromosomes exactly when to condense during cell division."

Misregulation of the polo kinase is associated with cancers, thereby suggesting a link between defects in chromosome condensation and the formation of tumours. "Pharmaceutical companies and independent researchers are already working on the development of new cancer drugs to inhibit the activity of the polo kinase," points out Damien D'Amours, "Understanding this enzyme's mode of action should enable us to control it. Such knowledge may reveal itself to be key in developing effective therapies to treat cancer."

In a preview article commissioned by Molecular Cell, world leader in chromosome dynamics Tatsuya Hirano, of the Riken Advanced Science Institute in Japan, qualifies the research as a tour de force study that will help address outstanding questions in the field.

About the Institute for Research in Immunology and Cancer

IRIC is a state-of-the-art biomedical research at the Université de Montréal. IRIC is committed to finding novel cancer therapeutics through multidisciplinary approaches. Its team of more than 350 scientists and professionals work on various aspects of cancer research from basic science through to clinical applications. For more information about IRIC, visit www.iric.ca. For more information about Damien D'Amours, visit http://www.iric.ca/Recherche/Chercheurs/Damours_D_EN.html.

Papers cited: Julie St-Pierre, Mélanie Douziech, Franck Bazile, Mirela Pascariu, Éric Bonneil, Véronique Sauvé, Hery Ratsima and Damien D'Amours. Polo Kinase Regulates Mitotic Chromosome Condensation by Hyperactivation of Condensin DNA Supercoiling Activity, Molecular Cell (2009), 34, 416-426. doi:10.1016/j.molcel.2009.04.013.

Tatsuya Hirano. Let's Play Polo in the Field of Condensation Molecular Cell (2009) 34, 399-401.

Carolyne Lord | EurekAlert!
Further information:
http://www.umontreal.ca
http://www.iric.ca/Recherche/Chercheurs/Damours_D_EN.html

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>