Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Uncover Global Distribution of Marine Biodiversity

In an unprecedented effort that will be published online on the 28th of July by the international journal Nature, a team of scientists mapped and analyzed global biodiversity patterns for over 11,000 marine species ranging from tiny zooplankton to sharks and whales.

The researchers found striking similarities among the distribution patterns, with temperature strongly linked to biodiversity for all thirteen groups studied. These results imply that future changes in ocean temperature, such as those due to climate change, may greatly affect the distribution of life in the sea. The scientists also found a high overlap between areas of high human impact and hotspots of marine diversity.

Much research has been conducted on diversity patterns on land, but our knowledge of the distribution of marine life has been more limited. This has changed through the decade-long efforts of the Census of Marine Life, upon which the current paper builds. The authors synthesized global diversity patterns for major species groups including corals, fishes, whales, seals, sharks, mangroves, seagrasses, and zooplankton. In the process, the global diversity of all coastal fish species has been mapped for the first time.

The researchers were interested in whether there are consistent "biodiversity hotspots" - areas of especially high numbers of species for many different types of marine organisms simultaneously. They found that the distribution of marine life showed two fundamental patterns: coastal species such as corals and coastal fishes tended to peak in diversity around Southeast Asia, whereas open-ocean creatures such as tunas and whales showed much broader hotspots across the mid-latitude oceans.

The scientists also tested whether these global patterns could be consistently explained by one or more environmental factors. Temperature was the only factor found to be linked with the distribution of all species groups, with the availability of habitat also playing a role.

Says lead author Derek Tittensor of Dalhousie University, “it was striking how consistently temperature was linked with marine diversity. This relationship suggests that ocean warming, such as that due to climate change, may rearrange the distribution of oceanic life.” Co-author Walter Jetz of Yale University notes “while we are increasingly aware of global gradients in diversity and their associated environmental factors, our knowledge of patterns in the ocean has lagged behind that of patterns on land. Our study attempts to help overcome this disparity.”

The study also assessed the overlap between hotspots of marine diversity and human impacts, i.e. the combined effects of fishing, habitat alteration, climate change and pollution. Human impacts were found to be particularly concentrated in areas of high diversity, suggesting the potential for severe species losses in these regions. Says co-author Camilo Mora of Dalhousie University, “the combined effects of exploitation, habitat alteration, pollution and climate change are threatening the diversity of life in the global ocean. Our research provides further evidence that limiting ocean warming and other human impacts will be particularly important in securing these hotspots of marine biodiversity into the future.”

Co-author Boris Worm of Dalhousie University also highlights the need to maintain biodiversity in the face of these impacts: “biodiversity and the functioning of ecosystems are often tightly coupled, with highly diverse ecosystems providing more goods and services that benefit human beings, as well as being more resilient in the face of disturbance, than less diverse ecosystems. The observed concentration of human impacts in our richest marine areas is a worrying indication of our growing footprint in the oceans.”

Many of the data used for this study come from the Ocean Biogeographic Information System (OBIS,, a public database created by the Census of Marine Life. Says Edward Vanden Berghe of Rutgers University, co-author of the paper and executive director of OBIS: “with OBIS we’ve created a framework for sharing and re-using data, which makes this type of global, all-encompassing science possible.”

| Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>