Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Have Trouble Accessing Human Embryonic Stem Cell Lines, Says Survey

13.12.2011
The promise of stem cell research for drug discovery and cell-based therapies depends on the ability of scientists to acquire stem cell lines for their research.

A survey of more than 200 human embryonic stem cell researchers in the United States found that nearly four in ten researchers have faced excessive delay in acquiring a human embryonic stem cell line and that more than one-quarter were unable to acquire a line they wanted to study.

gThe survey results provide empirical data to support previously anecdotal concerns that delays in acquiring or an inability to acquire certain human embryonic stem cell lines may be hindering stem cell science in the United States,h said Aaron Levine, an assistant professor in the School of Public Policy in the Ivan Allen College of Liberal Arts at the Georgia Institute of Technology.

Results of the survey were published in the December issue of the journal Nature Biotechnology. Funding for the study was provided by the Kauffman Foundationfs Roadmap for an Entrepreneurial Economy Program.

Levine administered the web-based survey in November 2010 to more than 1,400 stem cell scientists working at U.S. academic and non]profit medical research institutions. Almost 400 respondents from 32 states completed the survey. Of those, 205 respondents reported using human embryonic stem cells in their research, and their responses were used in this study.

The surveyed scientists cited four main reasons for their problems accessing human embryonic stem cell lines: difficulty obtaining material transfer agreements, failure to acquire research approval from internal institutional oversight committees, cell line owners that were unwilling to share and federal policy considerations.

gBureaucratic challenges may be inevitable in this ethically contentious and politically sensitive field, but policymakers should attempt to mitigate these issues by doing things like encouraging institutions to accept third-party ownership verification and providing clearer guidance on human embryonic stem cell research not eligible for federal funding,h said Levine, who is also a member of the Georgia Tech Institute for Bioengineering and Bioscience.

The broad patents assigned to the initial inventors of the method used to isolate embryonic stem cells and numerous narrower patents claiming specific human embryonic stem cell-related techniques are also factors complicating access to human embryonic stem cell lines, according to Levine.

When survey respondents were asked how many of the more than 1,000 existing human embryonic stem cell lines they used, 76 percent reported using three or fewer lines and 54 percent reported using two or fewer lines in their research. More than half of the 130 respondents cited access issues as a major reason they chose to use specific cell lines in their research.

gThese results illustrate that many human embryonic stem cell scientists in the United States are not conducting comparative studies with a diverse set of human embryonic stem cell lines, which raises concern that at least some results are cell-line specific rather than broadly applicable,h said Levine. gFederal and state funding agencies may want to consider encouraging research using multiple diverse human embryonic stem cell lines to improve the reliability of research results.h

Embryonic stem cell lines are being used to develop new cellular therapies for various diseases, to screen for new drugs and to better understand inherited diseases. Itfs crucial that diverse lines are available for this research to ensure that all individuals benefit from the results.

While availability was cited as the most common factor affecting scientistsf choices regarding which cell lines to use, other considerations included suitability for a specific project, familiarity with specific lines, a desire to reduce complications in the laboratory, cost, the extent of relevant literature and the preferences of scientistsf colleagues.

Three of the initial human embryonic stem cell lines derived at the University of Wisconsin in the late 1990s were the lines most commonly used by respondents. Cell lines H1, H9 and H7 were used by 79, 68 and 26 percent of respondents, respectively. Scientists also reported using more than 100 other lines, but each of these was used by fewer than 12 percent of respondents.

gOther research communities in the life sciences have experienced material access problems and they addressed them, in part, by creating centralized information and data sharing hubs, including public DNA sequence databases, tissue banks and mouse repositories. The stem cell research community has taken promising steps in this direction, but this analysis should encourage the community to continue and, if possible, accelerate these efforts,h added Levine.

Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 314
Atlanta, Georgia 30308 USA
Media Relations Contacts: Abby Robinson (abby@innovate.gatech.edu; 404-385-3364) or John Toon (jtoon@gatech.edu; 404-894-6986)

Writer: Abby Robinson

John Toon | Newswise Science News
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>