Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists trace evolution of butterflies infected with deadly bacteria

14.09.2009
Scientists at the University of Liverpool have traced the evolution of a species of tropical butterfly, infected with a bacterium that kills males, by comparing current butterfly populations with more than 200 museum specimens.

The bacteria, called Wolbachia, are a parasitic microbe and are known to significantly alter the reproductive capabilities of a high proportion of insect species, including wasps and fruit fly. The team found that the male-to-female ratio in butterfly populations fluctuated rapidly due to the interaction between the species and the bacteria over time and geographical space.

In the butterfly, Hypolimnas bolina, these bacteria are passed to offspring through the mother and kill the males as they develop in the egg. This results in the butterfly population having a biased sex-ratio, with a high number of females reproducing with very few males.

Using forensic DNA techniques to analyse specimens from the 1800s and 1900s, small samples of DNA were taken from the legs of both female and male butterflies and tested for the presence of the bacterium. The frequency and activity of the bacteria in the population was estimated and the results were compared to modern day samples so that the evolution in each population could be directly observed.

The team found that in some butterfly populations a gene had evolved that suppresses the effects of the bacteria so that infected males survive, but in other populations in the South Pacific for example, the frequency of the bacterium varied greatly and could rise to extreme levels. The result was that the sex-ratio of a population changed rapidly from a balanced male/female population to female-biased, which can alter the butterfly's behaviour and reproductive biology.

Professor Greg Hurst, from the University's School of Biological Sciences, said: "The butterfly has fascinated scientists for more than a century and was heavily collected and studied during the Victorian period and early 20th century. The butterfly, with its many colour patterns, illustrated variety within a species and was therefore a good model for 19th century scientists studying Darwin's theory of evolution. Today we can benefit from this early interest through museum collections, where we can now use the latest DNA technology to understand how species have evolved across time and geographical space."

Dr Emily Hornett added: "Before the 1990s it was practically impossible to extract DNA from historical specimens. Recent developments in forensic science, however, have allowed us to utilise new technologies to study museum collections and build a detailed picture of a species' evolution over a long period of time. By analysing DNA samples from the legs of butterflies living a century ago, and comparing these with contemporary samples, we were able to directly observe evolution between a butterfly and the bacteria that infects them."

Scientists are now working to locate the 'suppressor gene' in the genome in order to understand how the butterfly has evolved in response to the harmful effects of the bacteria.

Scientists studied specimens at the Natural History Museum, London and the Oxford University Museum of Natural History. The research is published in Current Biology.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>