Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists trace evolution of butterflies infected with deadly bacteria

14.09.2009
Scientists at the University of Liverpool have traced the evolution of a species of tropical butterfly, infected with a bacterium that kills males, by comparing current butterfly populations with more than 200 museum specimens.

The bacteria, called Wolbachia, are a parasitic microbe and are known to significantly alter the reproductive capabilities of a high proportion of insect species, including wasps and fruit fly. The team found that the male-to-female ratio in butterfly populations fluctuated rapidly due to the interaction between the species and the bacteria over time and geographical space.

In the butterfly, Hypolimnas bolina, these bacteria are passed to offspring through the mother and kill the males as they develop in the egg. This results in the butterfly population having a biased sex-ratio, with a high number of females reproducing with very few males.

Using forensic DNA techniques to analyse specimens from the 1800s and 1900s, small samples of DNA were taken from the legs of both female and male butterflies and tested for the presence of the bacterium. The frequency and activity of the bacteria in the population was estimated and the results were compared to modern day samples so that the evolution in each population could be directly observed.

The team found that in some butterfly populations a gene had evolved that suppresses the effects of the bacteria so that infected males survive, but in other populations in the South Pacific for example, the frequency of the bacterium varied greatly and could rise to extreme levels. The result was that the sex-ratio of a population changed rapidly from a balanced male/female population to female-biased, which can alter the butterfly's behaviour and reproductive biology.

Professor Greg Hurst, from the University's School of Biological Sciences, said: "The butterfly has fascinated scientists for more than a century and was heavily collected and studied during the Victorian period and early 20th century. The butterfly, with its many colour patterns, illustrated variety within a species and was therefore a good model for 19th century scientists studying Darwin's theory of evolution. Today we can benefit from this early interest through museum collections, where we can now use the latest DNA technology to understand how species have evolved across time and geographical space."

Dr Emily Hornett added: "Before the 1990s it was practically impossible to extract DNA from historical specimens. Recent developments in forensic science, however, have allowed us to utilise new technologies to study museum collections and build a detailed picture of a species' evolution over a long period of time. By analysing DNA samples from the legs of butterflies living a century ago, and comparing these with contemporary samples, we were able to directly observe evolution between a butterfly and the bacteria that infects them."

Scientists are now working to locate the 'suppressor gene' in the genome in order to understand how the butterfly has evolved in response to the harmful effects of the bacteria.

Scientists studied specimens at the Natural History Museum, London and the Oxford University Museum of Natural History. The research is published in Current Biology.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>