Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists trace evolution of butterflies infected with deadly bacteria

14.09.2009
Scientists at the University of Liverpool have traced the evolution of a species of tropical butterfly, infected with a bacterium that kills males, by comparing current butterfly populations with more than 200 museum specimens.

The bacteria, called Wolbachia, are a parasitic microbe and are known to significantly alter the reproductive capabilities of a high proportion of insect species, including wasps and fruit fly. The team found that the male-to-female ratio in butterfly populations fluctuated rapidly due to the interaction between the species and the bacteria over time and geographical space.

In the butterfly, Hypolimnas bolina, these bacteria are passed to offspring through the mother and kill the males as they develop in the egg. This results in the butterfly population having a biased sex-ratio, with a high number of females reproducing with very few males.

Using forensic DNA techniques to analyse specimens from the 1800s and 1900s, small samples of DNA were taken from the legs of both female and male butterflies and tested for the presence of the bacterium. The frequency and activity of the bacteria in the population was estimated and the results were compared to modern day samples so that the evolution in each population could be directly observed.

The team found that in some butterfly populations a gene had evolved that suppresses the effects of the bacteria so that infected males survive, but in other populations in the South Pacific for example, the frequency of the bacterium varied greatly and could rise to extreme levels. The result was that the sex-ratio of a population changed rapidly from a balanced male/female population to female-biased, which can alter the butterfly's behaviour and reproductive biology.

Professor Greg Hurst, from the University's School of Biological Sciences, said: "The butterfly has fascinated scientists for more than a century and was heavily collected and studied during the Victorian period and early 20th century. The butterfly, with its many colour patterns, illustrated variety within a species and was therefore a good model for 19th century scientists studying Darwin's theory of evolution. Today we can benefit from this early interest through museum collections, where we can now use the latest DNA technology to understand how species have evolved across time and geographical space."

Dr Emily Hornett added: "Before the 1990s it was practically impossible to extract DNA from historical specimens. Recent developments in forensic science, however, have allowed us to utilise new technologies to study museum collections and build a detailed picture of a species' evolution over a long period of time. By analysing DNA samples from the legs of butterflies living a century ago, and comparing these with contemporary samples, we were able to directly observe evolution between a butterfly and the bacteria that infects them."

Scientists are now working to locate the 'suppressor gene' in the genome in order to understand how the butterfly has evolved in response to the harmful effects of the bacteria.

Scientists studied specimens at the Natural History Museum, London and the Oxford University Museum of Natural History. The research is published in Current Biology.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>