Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists trace evolution of butterflies infected with deadly bacteria

14.09.2009
Scientists at the University of Liverpool have traced the evolution of a species of tropical butterfly, infected with a bacterium that kills males, by comparing current butterfly populations with more than 200 museum specimens.

The bacteria, called Wolbachia, are a parasitic microbe and are known to significantly alter the reproductive capabilities of a high proportion of insect species, including wasps and fruit fly. The team found that the male-to-female ratio in butterfly populations fluctuated rapidly due to the interaction between the species and the bacteria over time and geographical space.

In the butterfly, Hypolimnas bolina, these bacteria are passed to offspring through the mother and kill the males as they develop in the egg. This results in the butterfly population having a biased sex-ratio, with a high number of females reproducing with very few males.

Using forensic DNA techniques to analyse specimens from the 1800s and 1900s, small samples of DNA were taken from the legs of both female and male butterflies and tested for the presence of the bacterium. The frequency and activity of the bacteria in the population was estimated and the results were compared to modern day samples so that the evolution in each population could be directly observed.

The team found that in some butterfly populations a gene had evolved that suppresses the effects of the bacteria so that infected males survive, but in other populations in the South Pacific for example, the frequency of the bacterium varied greatly and could rise to extreme levels. The result was that the sex-ratio of a population changed rapidly from a balanced male/female population to female-biased, which can alter the butterfly's behaviour and reproductive biology.

Professor Greg Hurst, from the University's School of Biological Sciences, said: "The butterfly has fascinated scientists for more than a century and was heavily collected and studied during the Victorian period and early 20th century. The butterfly, with its many colour patterns, illustrated variety within a species and was therefore a good model for 19th century scientists studying Darwin's theory of evolution. Today we can benefit from this early interest through museum collections, where we can now use the latest DNA technology to understand how species have evolved across time and geographical space."

Dr Emily Hornett added: "Before the 1990s it was practically impossible to extract DNA from historical specimens. Recent developments in forensic science, however, have allowed us to utilise new technologies to study museum collections and build a detailed picture of a species' evolution over a long period of time. By analysing DNA samples from the legs of butterflies living a century ago, and comparing these with contemporary samples, we were able to directly observe evolution between a butterfly and the bacteria that infects them."

Scientists are now working to locate the 'suppressor gene' in the genome in order to understand how the butterfly has evolved in response to the harmful effects of the bacteria.

Scientists studied specimens at the Natural History Museum, London and the Oxford University Museum of Natural History. The research is published in Current Biology.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>