Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists trace evolution of butterflies infected with deadly bacteria

14.09.2009
Scientists at the University of Liverpool have traced the evolution of a species of tropical butterfly, infected with a bacterium that kills males, by comparing current butterfly populations with more than 200 museum specimens.

The bacteria, called Wolbachia, are a parasitic microbe and are known to significantly alter the reproductive capabilities of a high proportion of insect species, including wasps and fruit fly. The team found that the male-to-female ratio in butterfly populations fluctuated rapidly due to the interaction between the species and the bacteria over time and geographical space.

In the butterfly, Hypolimnas bolina, these bacteria are passed to offspring through the mother and kill the males as they develop in the egg. This results in the butterfly population having a biased sex-ratio, with a high number of females reproducing with very few males.

Using forensic DNA techniques to analyse specimens from the 1800s and 1900s, small samples of DNA were taken from the legs of both female and male butterflies and tested for the presence of the bacterium. The frequency and activity of the bacteria in the population was estimated and the results were compared to modern day samples so that the evolution in each population could be directly observed.

The team found that in some butterfly populations a gene had evolved that suppresses the effects of the bacteria so that infected males survive, but in other populations in the South Pacific for example, the frequency of the bacterium varied greatly and could rise to extreme levels. The result was that the sex-ratio of a population changed rapidly from a balanced male/female population to female-biased, which can alter the butterfly's behaviour and reproductive biology.

Professor Greg Hurst, from the University's School of Biological Sciences, said: "The butterfly has fascinated scientists for more than a century and was heavily collected and studied during the Victorian period and early 20th century. The butterfly, with its many colour patterns, illustrated variety within a species and was therefore a good model for 19th century scientists studying Darwin's theory of evolution. Today we can benefit from this early interest through museum collections, where we can now use the latest DNA technology to understand how species have evolved across time and geographical space."

Dr Emily Hornett added: "Before the 1990s it was practically impossible to extract DNA from historical specimens. Recent developments in forensic science, however, have allowed us to utilise new technologies to study museum collections and build a detailed picture of a species' evolution over a long period of time. By analysing DNA samples from the legs of butterflies living a century ago, and comparing these with contemporary samples, we were able to directly observe evolution between a butterfly and the bacteria that infects them."

Scientists are now working to locate the 'suppressor gene' in the genome in order to understand how the butterfly has evolved in response to the harmful effects of the bacteria.

Scientists studied specimens at the Natural History Museum, London and the Oxford University Museum of Natural History. The research is published in Current Biology.

Kate Spark | EurekAlert!
Further information:
http://www.liv.ac.uk

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>