Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tie DNA repair to key cell signaling network

18.06.2012
Previously unknown repair byproduct could be ‘master regulator’ of many basic cell processes

University of Texas Medical Branch at Galveston researchers have found a surprising connection between a key DNA-repair process and a cellular signaling network linked to aging, heart disease, cancer and other chronic conditions. The discovery promises to open up an important new area of research — one that could ultimately yield novel treatments for a wide variety of diseases.

"This is a totally new concept — it goes against current dogma about the role of DNA repair," said UTMB professor Istvan Boldogh, senior author of a paper on the work now online in the Journal of Biological Chemistry. "We couldn't believe it ourselves, but the data convinced us."

Boldogh and his colleagues came up with the idea of a link between DNA repair and cellular signaling after a close examination of the relationship between DNA damage and cell death produced unexpected results. Conventional DNA-repair dogma holds that a cell's lifespan is determined by the amount of accumulated DNA damage it suffers — the overall corruption of genetic information stored in sequences of molecules called bases, which form the "rungs" of the DNA double helix. The cells used in Boldogh's study were especially vulnerable to damage because they lacked a key enzyme that repairs the DNA base guanine. According to dogma, this should have shortened the cells' lives; instead, they actually lived longer than expected. This made Boldogh wonder if another factor was involved in reducing the lifespan of normal cells.

"We proposed the hypothesis that instead of the accumulation of damaged guanine in DNA causing ill effects, what is significant is the release of a DNA-repair byproduct that somehow activates processes that shorten the lifespan of cells," Boldogh said.

The researchers knew just where to look to find this hypothetical repair byproduct. The majority of DNA damage is caused by ubiquitous reactive oxygen species, very chemically active molecules created as byproducts of respiration. When DNA meets reactive oxygen species, one of the most common results is the transformation of the DNA base guanine into a molecule called 8-oxoguanine, which can produce mutations in genes.

To protect the integrity of the genetic code, cells remove 8-oxoguanine from their DNA with a repair enzyme called OGG1. OGG1 does its job by attaching to a damaged base, cutting it free from the DNA molecule, and then releasing it. Boldogh and his collaborators found that their key byproduct was being produced just after this repair process was completed. Analyzing test-tube, cell-culture and mouse experimental data, they realized that immediately after being released by OGG1, 8-oxoguanine reunites with the repair enzyme, attaching at a bonding site different from the one used previously. And the resulting 8-oxoguanine-OGG1 complex, they found, has the ability to activate the powerful Ras signaling pathways, some of the most important biochemical networks in the cell.

"Ras family proteins are involved in almost every cell function: metabolism, activation of genes, growth signals, inflammation signals, apoptosis," Boldogh said. "Because it activates Ras pathways, the release of 8-oxoguanine in DNA base repair could be a master regulator of many very basic processes."

According to Boldogh, learning to control this "master regulator," could result in profound consequences for biomedical science and human health. "The ability to regulate 8-oxoguanine excision may give us the ability to prevent the inflammation that's key to a number of chronic diseases — arthritis, atherosclerosis, Alzheimer's and others," he said. "We believe it may even enable us to extend lifespan, or at least healthy lifespan, which would be a very big achievement. Possibilities like that make us believe that this discovery is going to be very significant."

Other authors of the Journal of Biological Chemistry article include research associate Gyorgy Hajas, postdoctoral fellows Leopoldo Aguilera-Aguirre and Attila Bacsi, research scientist Muralidhar Hegde, associate professor Tapas Hazra, professors Sanjiv Sur and Sankar Mitra, Attila Bacsi of the University of Debrecen, Debrecen, Hungary, and Zsolt Radak of Semmelweis University, Budapest, Hungary. This research was supported by the National Institute of Environmental Health Sciences, the National Institute of Allergy and Infectious Disease and UTMB's National Heart Lung and Blood Institute Proteomics Center.

Jim Kelly | EurekAlert!
Further information:
http://www.utmb.edu

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>