Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Testing Early Warning System for West Nile Virus

02.11.2012
When weather radar shows a funnel cloud, the tornado sirens howl, and folks run for cover. With outbreaks of West Nile virus, it’s not that simple.

Michael Wimberly, senior scientist at the Geographic Information Science Center of Excellence at South Dakota State University, has begun testing an early warning system for West Nile virus. Through a grant from the National Institute of Allergy and Infectious Diseases, Wimberly has analyzed satellite imaging data from 2000 to the present day to build a store of information to predict the future.

Key collaborators in this interdisciplinary effort include professor Mike Hildreth in biology and microbiology, associate professor Yi Liu in electrical engineering and computer science, and Ting-Wu Chuang, a former postdoctoral researcher now at Taiwan Medical University. Wimberly and Chuang recently published their findings on climatic variability and West Nile virus outbreaks in the northern Great Plains in the journal PLOS ONE.

“My first forecast in 2010 was completely wrong,” he said. An early spring led to a prediction of an active year for West Nile virus, but the opposite was true.

“What we’re doing is unique,” Wimberly said. “We are trying to make a much tighter link from research to application.” To do this, he has been working closely with the S.D. Department of Health and the state epidemiologist.

After his first attempt, Wimberly developed more sophisticated models and predicted a low risk of West Nile infections for 2011. This time he was right.

Temperature strong indicator
“Our research has shown if we look broadly at a regional level, temperature is an extremely strong driver,” he said.

Wimberly found associations between West Nile virus and temperature at two different times of the year. First, an earlier spring green up, like this past year with the warm April, gives the virus a longer amplification period, he said. “In general, mosquitos develop more rapidly, are more active and tend to bite more when it’s hotter.”

Since the virus originates in the bird population but is transmitted to humans through a mosquito, an early spring alone is not a sufficient predictor. Wimberly explained that the Culex tarsalis mosquito must first bite an infected bird to acquire West Nile, and then the virus must incubate in the mosquito.

“The blood goes into the stomach,” he said, but in order for the mosquito to transmit the disease, the virus must reach its salivary glands. This process is also temperature dependent.

“The warmer it gets, the shorter the amount of time it takes for the mosquitos to become infectious,” Wimberly said. Consequently, a warmer than normal summer will accelerate the transmission from mosquitoes to humans.

In 2010, the population of the West Nile-carrying mosquitos was high, Wimberly explained. Yet the expected outbreak never occurred because of the cooler temperatures that summer. Despite the high mosquito numbers, very few were infected with the West Nile virus.

Moisture, more complicated.

Determining the virus’ relationship with moisture and rainfall is more complicated, Wimberly said. Mosquitoes need water to breed; therefore, people assume that areas experiencing a drought will have a reduced risk of West Nile virus.

“There is a tendency to assume a linear relationship with rainfall and mosquitos,” Wimberly said, but it’s more complex than that.

“Culex tarsalis are not flood water mosquitoes, so they don’t respond to rainfall with a huge breeding generation,” he said. The West Nile carriers are selective, preferring grass in roadside ditches, wheel ruts in a pasture, and irrigated alfalfa as a breeding ground. Wimberly called it the “Goldilocks effect--the water needs to be just right.”

After dramatic declines in the incidence of West Nile in 2010 and 2011, some researchers thought the virus had become less virulent and was fading away, Wimberly explained. Others believed that the bulk of the population had already been infected without having major symptoms and were already immune.

Enter 2012, the deadliest West Nile season ever.

Wimberly submitted his forecast for 2012 before the season began, and using a temperature-driven model, he predicted a high risk for West Nile outbreaks in South Dakota.
“You don’t hope you’re right; you don’t want a disease outbreak,” Wimberly said.

But he was right.

Model, a work in progress
Wimberly explained, “You fit a model, use it to make a forecast and put it out there and then evaluate the forecast and see where it’s right and wrong.” But to perfect the model, he said, “you have to be in the game for the long term.”
To do this, Wimberly has applied to the National Institutes of Health for an extension of the four-year grant which began in 2008. His next step will be to incorporate more information to do risk mapping, identifying places where transmission risk is highest.

“Over time, we get better,” Wimberly said, and as a result, the public health community will begin to trust the forecasts.

Though sirens might not sound to warn about West Nile virus, Wimberly’s forecasts may one day offer a warning to take precautions to avoid contracting the disease.

About GIS
The Geographic Information Science Center of Excellence (GIScCE) is a collaboration between SDSU and the U.S. Geological Survey's Earth Resources Observation and Science (EROS) Center. The GIScCE enables South Dakota State University faculty and students to collaborate with EROS scientists to conduct research, seek professional development, and implement educational programs in the field of geographic information science.

About South Dakota State University

Founded in 1881, South Dakota State University is the state’s Morrill Act land-grant institution as well as its largest, most comprehensive school of higher education. SDSU confers degrees from eight different colleges representing more than 175 majors, minors and specializations. The institution also offers 29 master’s degree programs, 12 Ph.D. and two professional programs.

The work of the university is carried out on a residential campus in Brookings, at sites in Sioux Falls, Pierre and Rapid City, and through Cooperative Extension offices and Agricultural Experiment Station research sites across the state.

Michael Wimberly | Newswise Science News
Further information:
http://www.sdstate.edu

Further reports about: Dakota EROS Excellence Award Nile Delta SDSU Science TV Virus West Nile virus educational program

More articles from Life Sciences:

nachricht Stress triggers key molecule to halt transcription of cell's genetic code
28.05.2015 | Stowers Institute for Medical Research

nachricht Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery
28.05.2015 | University of Waterloo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Siemens will provide the first H-class power plant technology in Mexico

28.05.2015 | Press release

Merging galaxies break radio silence

28.05.2015 | Physics and Astronomy

A New Kind of Wood Chip: Collaboration Could Yield Biodegradable Computer Chips

28.05.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>