Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists test a Nanoparticle “Alarm Clock” to Awaken Immune Systems Put to Sleep by Cancer

29.07.2014

Researchers at Dartmouth-Hitchcock Norris Cotton Cancer Center are exploring ways to wake up the immune system so it recognizes and attacks invading cancer cells. Tumors protect themselves by tricking the immune system into accepting everything as normal, even while cancer cells are dividing and spreading.

One pioneering approach, discussed in a review article published this week in WIREs Nanomedicine and Nanobiotechnology, uses nanoparticles to jumpstart the body’s ability to fight tumors. Nanoparticles are too small to imagine. One billion could fit on the head of a pin.


A nanoparticle lab at Dartmouth's Geisel School of Medicine

This makes them stealthy enough to penetrate cancer cells with therapeutic agents such as antibodies, drugs, vaccine type viruses, or even metallic particles. Though small, nanoparticles can pack large payloads of a variety of agents that have different effects that activate and strengthen the body’s immune system response against tumors.

There is an expanding array of nanoparticle types being developed and tested for cancer therapy. They are primarily being used to package and deliver the current generation of cancer cell killing drugs and progress is being made in that effort.

“Our lab’s approach differs from most in that we use nanoparticles to stimulate the immune system to attack tumors and there are a variety of potential ways that can be done,” said Steve Fiering, PhD, Norris Cotton Cancer Center researcher and professor of Microbiology and Immunology, and of Genetics at the Geisel School of Medicine at Dartmouth. “Perhaps the most exciting potential of nanoparticles is that although very small, they can combine multiple therapeutic agents.”

The immune therapy methods limit a tumor’s ability to trick the immune system. It helps it to recognize the threat and equip it to effectively attack the tumor with more “soldier” cells. These approaches are still early in development in the laboratory or clinical trials.

“Now that efforts to stimulate anti-tumor immune responses are moving from the lab to the clinic, the potential for nanoparticles to be utilized to improve an immune-based therapy approach is attracting a lot of attention from both scientists and clinicians. And clinical usage does not appear too distant,” said Fiering.

Fiering is testing the use of heat in combination with nanoparticles. An inactive metallic nanoparticle containing iron, silver, or gold is absorbed by a cancer cell. Then the nanoparticle is activated using magnetic energy, infrared light, or radio waves. The interaction creates heat that kills cancer cells.

The heat, when precisely applied, can prompt the immune system to kill cancer cells that have not been heated. The key to this approach is minimizing healthy tissue damage while maximizing cancerous tumor destruction of the sort that improves recognition of the tumor by the immune system.

Fiering cautions that there is a great deal of research and many technical variables that should be explored to find the most effective ways to use nanoparticles to heat tumors and stimulate anti-tumor immunity.

According to Fiering, this approach is far from new, “The use of heat to treat cancer was first recorded by ancient Egyptians. But has reemerged with high tech modern systems as a contributor to the new paradigm of fighting cancer with the patients’ own immune system.”

About Norris Cotton Cancer Center at Dartmouth-Hitchcock
Norris Cotton Cancer Center combines advanced cancer research at Dartmouth and the Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute’s “Comprehensive Cancer Center” designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at www.cancer.dartmouth.edu

Donna Dubuc | newswise

Further reports about: Cancer Medicine ability attack heat immune nanoparticle stimulate tumors

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>