Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists test a Nanoparticle “Alarm Clock” to Awaken Immune Systems Put to Sleep by Cancer

29.07.2014

Researchers at Dartmouth-Hitchcock Norris Cotton Cancer Center are exploring ways to wake up the immune system so it recognizes and attacks invading cancer cells. Tumors protect themselves by tricking the immune system into accepting everything as normal, even while cancer cells are dividing and spreading.

One pioneering approach, discussed in a review article published this week in WIREs Nanomedicine and Nanobiotechnology, uses nanoparticles to jumpstart the body’s ability to fight tumors. Nanoparticles are too small to imagine. One billion could fit on the head of a pin.


A nanoparticle lab at Dartmouth's Geisel School of Medicine

This makes them stealthy enough to penetrate cancer cells with therapeutic agents such as antibodies, drugs, vaccine type viruses, or even metallic particles. Though small, nanoparticles can pack large payloads of a variety of agents that have different effects that activate and strengthen the body’s immune system response against tumors.

There is an expanding array of nanoparticle types being developed and tested for cancer therapy. They are primarily being used to package and deliver the current generation of cancer cell killing drugs and progress is being made in that effort.

“Our lab’s approach differs from most in that we use nanoparticles to stimulate the immune system to attack tumors and there are a variety of potential ways that can be done,” said Steve Fiering, PhD, Norris Cotton Cancer Center researcher and professor of Microbiology and Immunology, and of Genetics at the Geisel School of Medicine at Dartmouth. “Perhaps the most exciting potential of nanoparticles is that although very small, they can combine multiple therapeutic agents.”

The immune therapy methods limit a tumor’s ability to trick the immune system. It helps it to recognize the threat and equip it to effectively attack the tumor with more “soldier” cells. These approaches are still early in development in the laboratory or clinical trials.

“Now that efforts to stimulate anti-tumor immune responses are moving from the lab to the clinic, the potential for nanoparticles to be utilized to improve an immune-based therapy approach is attracting a lot of attention from both scientists and clinicians. And clinical usage does not appear too distant,” said Fiering.

Fiering is testing the use of heat in combination with nanoparticles. An inactive metallic nanoparticle containing iron, silver, or gold is absorbed by a cancer cell. Then the nanoparticle is activated using magnetic energy, infrared light, or radio waves. The interaction creates heat that kills cancer cells.

The heat, when precisely applied, can prompt the immune system to kill cancer cells that have not been heated. The key to this approach is minimizing healthy tissue damage while maximizing cancerous tumor destruction of the sort that improves recognition of the tumor by the immune system.

Fiering cautions that there is a great deal of research and many technical variables that should be explored to find the most effective ways to use nanoparticles to heat tumors and stimulate anti-tumor immunity.

According to Fiering, this approach is far from new, “The use of heat to treat cancer was first recorded by ancient Egyptians. But has reemerged with high tech modern systems as a contributor to the new paradigm of fighting cancer with the patients’ own immune system.”

About Norris Cotton Cancer Center at Dartmouth-Hitchcock
Norris Cotton Cancer Center combines advanced cancer research at Dartmouth and the Geisel School of Medicine with patient-centered cancer care provided at Dartmouth-Hitchcock Medical Center, at Dartmouth-Hitchcock regional locations in Manchester, Nashua, and Keene, NH, and St. Johnsbury, VT, and at 12 partner hospitals throughout New Hampshire and Vermont. It is one of 41 centers nationwide to earn the National Cancer Institute’s “Comprehensive Cancer Center” designation. Learn more about Norris Cotton Cancer Center research, programs, and clinical trials online at www.cancer.dartmouth.edu

Donna Dubuc | newswise

Further reports about: Cancer Medicine ability attack heat immune nanoparticle stimulate tumors

More articles from Life Sciences:

nachricht Cells cling and spiral 'like vines' in first 3-D tissue scaffold for plants
27.08.2015 | University of Cambridge

nachricht Cellular contamination pathway for plutonium, other heavy elements, identified
27.08.2015 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

Im Focus: A Grand Voyage for Tiny Organisms

Climate and Ecosystem Change in the Mediterranean

Since the opening of the Suez Canal in 1869 many hundreds of marine animal and plant species from the Red Sea have invaded the eastern Mediterranean, leading...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Cells cling and spiral 'like vines' in first 3-D tissue scaffold for plants

27.08.2015 | Life Sciences

Hypoallergenic parks: Coming soon?

27.08.2015 | Health and Medicine

Stiffer breast tissue in obese women promotes tumors

27.08.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>