Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Teach Cultured Brain Cells to Keep Time

16.06.2010
The ability to tell time is fundamental to how humans interact with each other and the world. Timing plays an important role, for example, in our ability to recognize speech patterns and to create music.

Patterns are an essential part of timing. The human brain easily learns patterns, allowing us to recognize familiar patterns of shapes, like faces, and timed patterns, like the rhythm of a song. But exactly how the brain keeps time and learns patterns remains a mystery.

FINDINGS
In this three-year study, UCLA scientists attempted to unravel the mystery by testing whether networks of brain cells kept alive in culture could be “trained” to keep time. The team stimulated the cells with simple patterns – two stimuli separated by different intervals lasting from a twentieth of a second up to half a second.

After two hours of training, the team observed a measurable change in the cellular networks’ response to a single input. In the networks trained with a short interval, the network’s activity lasted for a short period of time. Conversely, in the networks trained with a long interval, network activity lasted for a longer amount of time.

IMPACT
The UCLA findings are the first to suggest that networks of brain cells in a petri dish can learn to generate simple timed intervals. The research sheds light on how the brain tells time and will enhance scientists’ understanding of how the brain works.
AUTHOR
Dean Buonomano, professor of neurobiology and psychology at UCLA’s David Geffen School of Medicine and Brain Research Institute, is available for interviews.
GRAPHICS
A color image showing cell-network response time is available upon request.
JOURNAL
The research appears in the June 13 edition of Nature Neuroscience, now online at http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.2579.html.
FUNDING
The study was supported by a grant from the National Institute of Mental Health.

Elaine Schmidt | Newswise Science News
Further information:
http://www.ucla.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>