Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists tailor cell surface targeting system to hit organelle ZIP codes

18.04.2012
Engineered particles tied to penetratin discover, deliver ligands for mitochondria, ribosomes

Scientists who developed a technology for identifying and targeting unique protein receptor ZIP Codes on the cellular surface have found a way to penetrate the outer membrane and deliver engineered particles - called iPhage - to organelles inside the cell.

In a paper published today online in Nature Communications, the team led by researchers at The University of Texas MD Anderson Cancer Center reports packaging the phage particles with a peptide called penetratin to reach inside the cell.

This new capacity was used to screen for peptide ligands - binding agents - that connect to receptors on mitochondria, which generate a cell's energy, and ribosomes, which process mRNA to make proteins.

The team found a peptide that binds to a specific ribosomal protein called RPL29 which, when delivered with penetratin, disrupts ribosomal function and kills cells. Cell survival was reduced in both malignant and non-malignant cells and in both mouse and human cell lines.

"We provided proof-of-concept for a direct intracellular ligand-receptor screening technology, which is clearly an unmet need in cancer biology, along with the discovery of an organelle ZIP Code that mediates cell death," said Renata Pasqualini, Ph.D., co-senior author of the paper and a professor in MD Anderson's David H. Koch Center for Applied Research of Genitourinary Cancers.

The RPL29 pathway is a new cell death pathway. The researchers found evidence of three types of cell death caused by disrupting the pathway with the new ligand.

"The molecular tool reported here along with its future ramifications will hopefully be of interest to targeted drug development, gene delivery, and mechanisms of human organelle diseases," said Wadih Arap, M.D., Ph.D., also of the Koch Center.

The iPhage screens for ligands inside the cell

Arap and Pasqualini pioneered a screening technique that exploits the existence of unique ZIP Codes in the vascular system to identify molecular targets and the ligands that can be used to selectively hit them.

They developed engineered viral particles, called phage, and packaged them with massive peptide libraries. When injected, these phage/peptide combinations bind to specific receptors in the blood vessels and organs. Cells are then fractionated and analyzed to discover which ligands bind to specific surface proteins.

Arap, Pasqualini and their colleagues have a number of targeted drugs in various stages of development based on screening and then delivery with the combinatorial particles.

The team wondered whether packaging the particles with penetratin, which is known to cross membranes without requiring a cellular receptor, would allow their technology to work inside of cells. "Penetratin makes a little bubble on the cell surface and the bubble goes in through the membrane," Arap said.

They dubbed the combination of penetratin and phage particles "internalizing phage," or iPhage. In a series of experiments, the team found:

iPhage successfully entered normal and malignant cells in both mouse and human cell lines while the engineered phage alone, or phage packaged with mutated penetratin, did not gain entry.

Connecting iPhage with the mitochondria localization signal (MLS) peptide resulted in a 10-fold concentration of MLS-iPhage in mitochondria compared to simple iPhage, showing that specific organelles could be targeted.

To screen for new ligands that might target specific organelles, they attached a random peptide library to iPhage particles and treated the KS1767 cells. Subsequent analysis found the peptide that binds to RPL29.

Packaged with penetratin, this "internalizing homing peptide" with the ungainly name YKWYYRGAA killed 75 percent of cells in culture while the peptide alone or penetratin alone killed virtually none.

Signs of apoptotic, autophagic and necrotic cell death were found with electron microscopy in cells killed by the YKWYYRGAA-penetratin combination.

Future studies will be needed to understand the complex cell death mechanism caused by the combination.

The study was funded by grants from the National Institutes of Health, the National Cancer Institute, the U.S. Department of Defense, by awards from AngelWorks, the Gilson-Longenbaugh Foundation, the Marcus Foundation, Inc., and MD Anderson's Odyssey Scholar program.

The University of Texas System, Arap and Pasqualini have equity in Alvos Therapeutics and Ablaris Therapeutics, MD Anderson manages and monitors these arrangements in accordance with its conflict-of-interest policy.

Co-authors with Arap and Pasqualini are co-first author Roberto Rangel and Liliana Guzman-Rojas, Fernanda Staquicini, Hitomi Hosoya, E. Magda Barbu, Michael Ozawa, Jing Nie and Erkki Koivunen, all of MD Anderson's Koch Center; Lucia le Roux and Juri Gelovani of MD Anderson's Department of Experimental Diagnostic Imaging; Kenneth Dunner Jr. and Robert Langley of MD Anderson's Department of Cancer Biology; E. Helene Sage of the Benaroya Research Institute at Virginia Mason in Seattle; Roy Lobb of Alvos Therapeutics, Waltham, Mass.; and Richard Sidman of Harvard Medical School and Beth Israel-Deaconess Medical Center in Boston.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>