Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists stress need for national marine biodiversity observation network

11.04.2013
With ocean life facing unprecedented threat from climate change, overfishing, pollution, invasive species and habitat destruction, a University of Florida researcher is helping coordinate national efforts to monitor marine biodiversity.

Humans depend on the ocean for food, medicine, transportation and recreation, yet little is known about how these vast ecosystems spanning 70 percent of the Earth's surface are functioning and changing. Following a workshop sponsored by U.S. federal agencies in 2010, researchers at eight institutions have proposed a blueprint for establishing a cooperative marine biodiversity observation network to monitor trends in marine ecosystem health and the distribution and abundance of oceanic life. The research will appear online in BioScience Thursday and in the journal's May print issue.

Biodiversity observation networks are indispensible tools, allowing scientists to follow and predict ecosystem changes to facilitate proactive responses to environmental pressures, said study co-author Gustav Paulay, invertebrate zoology curator at the Florida Museum of Natural History on the UF campus.

"Biodiversity is important not only because it's what the natural world is about, but also because tracking it tells you how healthy things are," Paulay said. "As an indicator of ecosystem health and resilience, biodiversity is key for sustaining oceans that face accelerating environmental change."

Experts determined a national marine biodiversity observation network could be established using existing technology within five years with appropriate funding and collaboration, but the effort requires strong leadership to integrate all the necessary elements, Paulay said. The study provides a series of recommendations, including coordination of existing efforts, digitization of historical data -- including vast museum collections – and establishment of regional centers to process and identify specimens.

"Tracking diversity is not just about tracking fish, or whales, or corals, but everything," Paulay said. "To date, there have been few attempts to track biodiversity broadly in the ocean."

From tiny phytoplankton and massive marine mammals to awe-inspiring sea dragons and ancient reefs, every element is important for healthy ecosystems, Paulay said.

Outside the U.S., efforts to create a marine biodiversity observation network have begun regionally in New Zealand and the European Union. The Smithsonian Institution also launched the first worldwide network of coastal field sites in 2012, a long-term project to monitor the ocean's coastal ecosystems.

Jim Carlton, a professor at Williams College in Massachusetts and director of the Maritime Studies Program of Williams College and Mystic Seaport, said the concept of a marine network is critical because elements are inter-related, from water quality and issues with fisheries to the regular arrival of new invasive species.

"It's rather amazing that in 2013, we don't have a well-established marine biodiversity network -- how could we not?" said Carlton, who is not involved with the study. "All coasts around the world are changing and we have a remarkably poor understanding about the extent of that change in many areas."

People are more dependent on oceans than they may realize, and without a coordinated network, researchers will not know how to manage these ecosystems, he said.

"The oceans are feeding hundreds of millions of people, they control the Earth's climate, 90 percent of all world goods travel on the ocean and most people in the world live within 100 miles of the sea," Carlton said. "For recreation, we rely on the fact that we can go to a beach and not get sick. We depend upon a huge amount of these resources in ways that we often don't know, but it really means maintaining the health of the ocean."

Divers have witnessed the effects of climate change most clearly on coral reefs, whose delicate ecology is highly sensitive to changes in maximum ocean temperatures, Paulay said.

"The scale of change was driven home to me in Palau in 1998, during a survey soon after the 1998 Pacific-wide warming event," Paulay said. "Palau is one of the gems of the world in terms of marine environments and reef diversity. When we returned to sites that once had acre upon acre of vibrant staghorn and bottlebrush corals covering the bottom, we found but a desert of dead skeletons -- mortality was virtually 100 percent."

Study co-authors include Emmett Duffy of the College of William and Mary, Linda Amaral-Zettler of the Marine Biological Laboratory in Woods Hole, Mass., Daphne Fautin of the University of Kansas, Tatiana Rynearson of the University of Rhode Island, Heidi Sosik of the Woods Hole Oceanographic Institution, and John Stachowicz of the University of California, Davis.

Writer: Danielle Torrent, dtorrent@flmnh.ufl.edu
Source: Gustav Paulay, 352-273-1948, paulay@flmnh.ufl.edu

Gustav Paulay | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>