Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Step Up Hunt for Bacterial Genes Tied to Lyme Disease

29.10.2012
Investigators at The University of Texas Health Science Center at Houston (UTHealth) have accelerated the search for the bacterial genes that make the Lyme disease bacterium so invasive and persistent. The discovery could advance the diagnosis and treatment of this disease, which affects an estimated 30,000 Americans each year.
The researchers have developed a new technique that allowed them to test 15 times more bacterial genes than had been evaluated in the previous 30 years to ascertain their roles in infection. Findings appeared Oct. 25 in the journal The Public Library of Science ONE (PLOS ONE), an international, peer-reviewed, open-access, online publication.

Scientists hope to use this information to unravel the mystery of how the spiral-shaped bacterium Borrelia burgdorferi causes Lyme disease. Ticks carry the bacterium and transfer it to animals and humans when the tiny spider-like creatures bite. The Lyme disease microorganism was discovered in 1981.

“We believe that this will be one of the most significant publications in Lyme disease in the next several years. This global approach will help ‘move the field forward’ and also serve as a model for other pathogens with similar properties,” said Steven Norris, Ph.D., the study’s senior author and the vice chair for research in the Department of Pathology and Laboratory Medicine at the UTHealth Medical School.

The bacterium can invade almost any tissue in humans or animals and trigger an infection that lasts from months to years. Its symptoms include a reddish rash that often resembles a bull’s eye and flu-like symptoms. The disease can lead to nervous system problems, joint inflammation and heart abnormalities. Most instances of Lyme disease can be treated with antibiotics.

“Our long-term goals are to screen, identify and characterize the virulence determinants of the Lyme disease bacterium and thereby dissect the mechanism of pathogenesis in mammals and ticks,” said Tao Lin, D,V.M., the study’s lead author and assistant professor of pathology and laboratory medicine at the UTHealth Medical School. “With this information, we will have a clearer picture about the virulence determinants and virulence factors for this fascinating microorganism and the mechanism of pathogenesis behind this unique, invasive, persistent pathogen.”

Norris, the Robert Greer Professor of Biomedical Sciences at UTHealth, and Lin are running tests on the 1,739 genes in the bacterium to see which genes impact the microorganism’s ability to spread disease.

To do this, they mutated the bacterial genes and gauged the impact in a mouse infection model. Overall, 4,479 mutated bacteria were isolated and characterized. Whereas it took researchers about three decades to knock out less than 40 bacterial genes, Norris and Lin knocked out 790 genes in a comparatively short period of time; some genes were “hit” multiple times. A newly developed screening technique, which involves signature-tagged mutagenesis and Luminex®-based high-throughput screening technologies, can also be used to identify infection-related genes in other bacteria.

“This kind of study enables us to better understand the disease pathogenesis at the basic level,” said Charles Ericsson, M.D., head of clinical infectious diseases at the UTHealth Medical School. “In time, such understanding of virulence properties might enable us to develop vaccine candidates, better diagnostic tools and perhaps even targeted drug intervention.”

Norris and Lin are on the faculty of The University of Texas Graduate School of Biomedical Sciences at Houston.

Previously, Norris helped develop a method based on one of the bacterium’s proteins, called VlsE, for diagnosing Lyme disease. The test, which is now used worldwide, involves detection of VlsE-specific antibodies, which are often found in people and animals infected with Lyme disease.

Also participating in the study from UTHealth were Lihui Gao, D.V.M., Chuhua Zhang, Evelyn Odeh and Loic Coutte, Ph.D. Mary B. Jacobs and Mario Philipp, Ph.D., of the Tulane University Health Sciences Center collaborated on the study as did George Chaconas, Ph.D., of The University of Calgary in Canada. Mutated strains produced through this study are being made available to the scientific community through BEI Resources.

The study is titled “Analysis of an ordered comprehensive STM mutant library in infectious Borrelia burgdorferi: insights into the genes required for mouse infectivity.” The project described was supported by Award Number R01AI059048 from the National Institute of Allergy and Infectious Diseases. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Allergy and Infectious Diseases or the National Institutes of Health.
Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>