Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists solve mystery of colorful armchair nanotubes

10.01.2012
Rice University researchers tag excitons in search for hues' clues

Rice University researchers have figured out what gives armchair nanotubes their unique bright colors: hydrogen-like objects called excitons.

Their findings appear in the online edition of the Journal of the American Chemical Society.

Armchair carbon nanotubes – so named for the "U"-shaped configuration of the atoms at their uncapped tips – are one-dimensional metals and have no band gap. This means electrons flow from one end to the other with little resistivity, the very property that may someday make armchair quantum wires possible.

The Rice researchers show armchair nanotubes absorb light like semiconductors. An electron is promoted from an immobile state to a conducting state by absorbing photons and leaving behind a positively charged "hole," said Rice physicist Junichiro Kono. The new electron-hole pair forms an exciton, which has a neutral charge.

"The excitons are created by the absorption of a particular wavelength of light," said graduate student and lead author Erik Hároz. "What your eye sees is the light that's left over; the nanotubes take a portion of the visible spectrum out." The diameter of the nanotube determines which parts of the visible spectrum are absorbed; this absorption accounts for the rainbow of colors seen among different batches of nanotubes.

Scientists have realized that gold and silver nanoparticles could be manipulated to reflect brilliant hues – a property that let artisans who had no notions of "nano" create stained glass windows for medieval cathedrals. Depending on their size, the particles absorbed and emitted light of particular colors due to a phenomenon known as plasma resonance.

In more recent times, researchers noticed semiconducting nanoparticles, also known as quantum dots, show colors determined by their size-dependent band gaps.

But plasma resonance happens at wavelengths outside the visible spectrum in metallic carbon nanotubes. And armchair nanotubes don't have band gaps.

Kono's lab ultimately determined that excitons are the source of color in batches of pure armchair nanotubes suspended in solution.

The results seem counterintuitive, Kono said, because excitons are characteristic of semiconductors, not metals. Kono is a professor of electrical and computer engineering and of physics and astronomy.

While armchair nanotubes don't have band gaps, they do have a unique electronic structure that favors particular wavelengths for light absorption, he said.

"In armchair nanotubes, the conduction and valence bands touch each other," Kono said. "The one-dimensionality, combined with its unique energy dispersion, makes it a metal. But the bands develop what's called a van Hove singularity," which appears as a peak in the density of states in a one-dimensional solid. "So there are lots of electronic states concentrated around this singularity."

Exciton resonance tends to occur around these singularities when hit with light, and the stronger the resonance, the more distinguished the color. "It's an unusual quality of these particular one-dimensional materials that these excitons can actually exist," Hároz said. "In most metals, that's not possible; there's not enough Coulomb interaction between the electron and the hole for an exciton to be stable."

The new paper follows on the heels of work by Kono and his team to create batches of pure single-walled carbon nanotubes through ultracentrifugation. In that process, nanotubes were spun in a mix of solutions with different densities up to 250,000 times the force of gravity. The tubes naturally gravitated toward separated solutions that matched their own densities to create a colorful "nano parfait."

As a byproduct of their current work, the researchers proved their ability to produce purified armchair nanotubes from a variety of synthesis techniques. They now hope to extend their investigation of the optical properties of armchairs beyond visible light. "Ultimately, we'd like to make one collective spectrum that includes frequency ranges all the way from ultraviolet to terahertz," Hároz said. "From that, we can know, optically, almost everything about these nanotubes."

Co-authors of the paper include Robert Hauge, a distinguished faculty fellow in chemistry at Rice; Rice alumnus Benjamin Lu; and professors Pavel Nikolaev and Sivaram Arepalli of Sungkyunkwan University, Suwon, Korea.

The research was supported by the Department of Energy, the Robert A. Welch Foundation, the Air Force Research Laboratory and the World Class University Program at Sungkyunkwan University.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/ja209333m

Download high-resolution images at http://media.rice.edu/images/media/NewsRels/0106_kono.jpg http://media.rice.edu/images/media/NewsRels/0106_metals.jpg

CAPTIONS:

(vials)

Armchair-enriched batches of nanotubes show their colors in an array of varying types. The vial at left is a mix of nanotubes straight from the furnace, suspended in liquid. The vials at right show nanotubes after separation through ultracentrifugation. Excitons absorb light in particular frequencies that depend on the diameter of the tube; the mix of colors not absorbed are what the eye sees. (Credit: Erik Hároz/Rice University)

(portrait)

Rice University physicist Junichiro Kono, left, and graduate student Erik Hároz show vials of metallic armchair nanotubes that appear colored after separation by type. Their coloration was a mystery until new work by the Rice team found that light-activated excitons in the nanotubes were the cause. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,708 undergraduates and 2,374 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://www.rice.edu/nationalmedia/Rice.pdf .

David Ruth | EurekAlert!
Further information:
http://www.rice.edu

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>