Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show how gene variant linked to ADHD could operate

17.08.2011
NIH study in mice shows a potential new target for the treatment of ADHD

A study using mice provides insight into how a specific receptor subtype in the brain could play a role in increasing a person's risk for attention-deficit hyperactivity disorder (ADHD). The research, conducted by the Intramural Research Program (IRP) at the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health, could also help explain how stimulants work to treat symptoms of ADHD.

Dysfunction of the dopamine D4 receptor subtype is linked to ADHD as well as other disorders characterized by decreased impulse control, including drug abuse. One subtype variant, D4.7, has been of particular interest because of its increased prevalence in those diagnosed with ADHD. However, the function of this particular variant in ADHD has been poorly understood.

In the study, published in today's Molecular Psychiatry, researchers inserted three variants of the dopamine D4 receptor into cells and into mice so that they could investigate differences in biological activities. The researchers found that the D4.7 variant, unlike its D4.2 and D4.4 counterparts, was not able to interact with the short version of the dopamine type 2 (D2S) receptor to reduce glutamate release in a brain region associated with impulsivity and symptoms of ADHD in humans.

"Although previous studies have shown that dysfunctional dopamine D4 receptors are implicated in ADHD, this is the first study to show how this genetic difference might translate into functional deficits seen with this disorder," said NIDA Director Dr. Nora D. Volkow. "Further research is needed to explore how this deficient interaction between receptors might be remedied, which could then lead to new medications for the treatment of ADHD."

Children with ADHD have trouble paying attention and controlling impulsive behaviors, and may be overly active, often resulting in poor school performance and social difficulties. They are also at increased risk for substance use disorders, particularly if their symptoms go untreated.

ADHD is the most commonly diagnosed neurobehavioral disorder of childhood, and the number of children diagnosed continues to rise. According to the Center for Disease Control's National Survey of Children's Health, the number of children aged 4-17 years that were identified by their parent as ever being diagnosed with ADHD increased by 21.8 percent from 2003-2007. By 2007, nearly one in 10 children aged 4-17 years were, at some point, diagnosed with ADHD. Among children with current ADHD diagnoses, 66.3 percent were taking medication for the disorder.

The most commonly used treatment for ADHD involves administering psychostimulant medications. Although these medications alleviate some of the symptoms of ADHD, it is unclear how these compounds act within the brain to do so.

"Our results suggest that psychostimulants might reduce glutamate release by amplifying this D4/D2S interaction," said Dr. Sergi Ferre, primary author for the study. "These results might also explain why these medications are less efficient in patients with the D4.7 variant."

For more information on the use of stimulants to treat ADHD, go to www.drugabuse.gov/infofacts/ADHD.html. To learn more about ADHD symptoms, causes, and treatments, with information on getting help and coping, visit www.nimh.nih.gov/health/publications/attention-deficit-hyperactivity-disorder/complete-index.shtml.

The study, which was the result of a multinational collaboration between researchers at the NIDA IRP, institutes in Spain (the University of Barcelona, the Autonomous University of Barcelona and the University of Navarra), Mexico (the National Polytechnic Institute), and Argentina (the National Council of Scientific and Technical Research), can be found online at: www.nature.com/mp/index.html.

The National Institute on Drug Abuse is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world's research on the health aspects of drug abuse and addiction. The Institute carries out a large variety of programs to inform policy and improve practice. Fact sheets on the health effects of drugs of abuse and information on NIDA research and other activities can be found on the NIDA home page at www.drugabuse.gov. To order publications in English or Spanish, call NIDA's new DrugPubs research dissemination center at 1-877-NIDA-NIH or 240-645-0228 (TDD) or fax or email requests to 240-645-0227 or drugpubs@nida.nih.gov. Online ordering is available at http://drugpubs.drugabuse.gov. NIDA's new media guide can be found at http://drugabuse.gov/mediaguide/.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIDA Press Office | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: ADHD Abuse Drug Abuse Drug Delivery Human vaccine IRP NIH Nida health services medical research

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>