Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists show how gene variant linked to ADHD could operate

17.08.2011
NIH study in mice shows a potential new target for the treatment of ADHD

A study using mice provides insight into how a specific receptor subtype in the brain could play a role in increasing a person's risk for attention-deficit hyperactivity disorder (ADHD). The research, conducted by the Intramural Research Program (IRP) at the National Institute on Drug Abuse (NIDA), part of the National Institutes of Health, could also help explain how stimulants work to treat symptoms of ADHD.

Dysfunction of the dopamine D4 receptor subtype is linked to ADHD as well as other disorders characterized by decreased impulse control, including drug abuse. One subtype variant, D4.7, has been of particular interest because of its increased prevalence in those diagnosed with ADHD. However, the function of this particular variant in ADHD has been poorly understood.

In the study, published in today's Molecular Psychiatry, researchers inserted three variants of the dopamine D4 receptor into cells and into mice so that they could investigate differences in biological activities. The researchers found that the D4.7 variant, unlike its D4.2 and D4.4 counterparts, was not able to interact with the short version of the dopamine type 2 (D2S) receptor to reduce glutamate release in a brain region associated with impulsivity and symptoms of ADHD in humans.

"Although previous studies have shown that dysfunctional dopamine D4 receptors are implicated in ADHD, this is the first study to show how this genetic difference might translate into functional deficits seen with this disorder," said NIDA Director Dr. Nora D. Volkow. "Further research is needed to explore how this deficient interaction between receptors might be remedied, which could then lead to new medications for the treatment of ADHD."

Children with ADHD have trouble paying attention and controlling impulsive behaviors, and may be overly active, often resulting in poor school performance and social difficulties. They are also at increased risk for substance use disorders, particularly if their symptoms go untreated.

ADHD is the most commonly diagnosed neurobehavioral disorder of childhood, and the number of children diagnosed continues to rise. According to the Center for Disease Control's National Survey of Children's Health, the number of children aged 4-17 years that were identified by their parent as ever being diagnosed with ADHD increased by 21.8 percent from 2003-2007. By 2007, nearly one in 10 children aged 4-17 years were, at some point, diagnosed with ADHD. Among children with current ADHD diagnoses, 66.3 percent were taking medication for the disorder.

The most commonly used treatment for ADHD involves administering psychostimulant medications. Although these medications alleviate some of the symptoms of ADHD, it is unclear how these compounds act within the brain to do so.

"Our results suggest that psychostimulants might reduce glutamate release by amplifying this D4/D2S interaction," said Dr. Sergi Ferre, primary author for the study. "These results might also explain why these medications are less efficient in patients with the D4.7 variant."

For more information on the use of stimulants to treat ADHD, go to www.drugabuse.gov/infofacts/ADHD.html. To learn more about ADHD symptoms, causes, and treatments, with information on getting help and coping, visit www.nimh.nih.gov/health/publications/attention-deficit-hyperactivity-disorder/complete-index.shtml.

The study, which was the result of a multinational collaboration between researchers at the NIDA IRP, institutes in Spain (the University of Barcelona, the Autonomous University of Barcelona and the University of Navarra), Mexico (the National Polytechnic Institute), and Argentina (the National Council of Scientific and Technical Research), can be found online at: www.nature.com/mp/index.html.

The National Institute on Drug Abuse is a component of the National Institutes of Health, U.S. Department of Health and Human Services. NIDA supports most of the world's research on the health aspects of drug abuse and addiction. The Institute carries out a large variety of programs to inform policy and improve practice. Fact sheets on the health effects of drugs of abuse and information on NIDA research and other activities can be found on the NIDA home page at www.drugabuse.gov. To order publications in English or Spanish, call NIDA's new DrugPubs research dissemination center at 1-877-NIDA-NIH or 240-645-0228 (TDD) or fax or email requests to 240-645-0227 or drugpubs@nida.nih.gov. Online ordering is available at http://drugpubs.drugabuse.gov. NIDA's new media guide can be found at http://drugabuse.gov/mediaguide/.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

NIDA Press Office | EurekAlert!
Further information:
http://www.nih.gov

Further reports about: ADHD Abuse Drug Abuse Drug Delivery Human vaccine IRP NIH Nida health services medical research

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>