Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed new light on link between 'killer cells' and diabetes

16.01.2012
Killer T-cells in the human body which help protect us from disease can inadvertently destroy cells that produce insulin, new research has uncovered.

The study provides the first evidence of this mechanism in action and could offer new understanding of the cause of Type 1 diabetes.

Professor Andy Sewell, an expert in human T-cells from Cardiff University's School of Medicine worked alongside diabetes experts from King's College London to better understand the role of T-cells in the development of Type 1 diabetes.

The team isolated a T-cell from a patient with Type 1 diabetes to view a unique molecular interaction which results in the killing of insulin-producing cells in the pancreas.

"Type 1 diabetes is a result of the body's own immune system attacking and destroying the cells in the pancreas that manufacture the hormone insulin. Insulin controls blood sugar levels and a lack of insulin is fatal if untreated," said Professor Sewell.

"The mechanism by which the body attacks its own insulin producing cells in the pancreas is not fully understood. Our findings show how killer T-cells might play an important role in autoimmune diseases like diabetes and we've secured the first ever glimpse of the mechanism by which killer T-cells can attack our own body cells to cause disease," he added.

Co-author of the study, Professor Mark Peakman from the National Institute for Health Research (NIHR) Biomedical Research Centre at King's College London and Guy's and St Thomas' NHS Foundation Trust said: "This first sight of how killer T-cells make contact with the cells that make insulin is very enlightening, and increases our understanding of how Type 1 diabetes may arise.

"This knowledge will be used in the future to help us predict who might get the disease and also to develop new approaches to prevent it. Our aim is to catch the disease early before too many insulin-producing cells have been damaged."

The team now hope that by gaining a better understanding of this process it will put them in a much stronger position to devise new ways to prevent or even halt the disease.

The study, funded by the UK Biotechnology and Biological Sciences Research Council (BBSRC), the Juvenile Diabetes Research Foundation (JDRF) using facilities at Diamond Light Source and published in Nature Immunology, shows that the killer T-cell receptor utilises an abnormal mode of binding in order to recognise cells producing insulin.

"The results of Dr Sewell's work provide key novel insights into T1D pathogenesis" said Teodora Staeva, Director of JDRF's Immune Therapies Program. "JDRF is pleased to support this kind of research that will accelerate the development of biomarkers and preventive therapies for Type 1 diabetes."

This unusual binding is thought to allow the T-cell to survive the culling process designed to rid the body of autoreactive T-cells.

The structure of the killer T-cell receptor bound to the insulin peptide shows that the interaction is highly focused on just a small part of the molecule.

In a further study published in the Journal of Biological Chemistry the same Cardiff and King's team has shown that this focused binding mode allows this T-cell receptor to respond to over 1.3 million other peptides of different molecular shape.

This ability to bind peptides with a multitude of different shapes may provide a clue as to how autoimmune diseases are initiated. It is possible that this T-cell was raised to fight an infection via one of the other 1.3 million peptides it can recognise but then inadvertently also recognised insulin once it had been put on 'red alert' by this infection.

Diabetes describes diseases where a person has high blood sugar. Treatment of diabetes and its complications represents a major health burden and accounts for over 10% of the National Health Service's annual budget.

Andy Sewell | EurekAlert!
Further information:
http://www.cardiff.ac.uk

More articles from Life Sciences:

nachricht Enduring cold temperatures alters fat cell epigenetics
19.04.2018 | University of Tokyo

nachricht Full of hot air and proud of it
18.04.2018 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

This 2-D nanosheet expands like a Grow Monster

19.04.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>