Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists shed light on the brain mechanisms behind a debilitating sleep disorder

11.10.2013
Researchers at the University of Toronto discover how the body's muscles accidentally fall asleep while awake

Normally muscles contract in order to support the body, but in a rare condition known as cataplexy the body's muscles "fall asleep" and become involuntarily paralyzed. Cataplexy is incapacitating because it leaves the affected individual awake, but either fully or partially paralyzed. It is one of the bizarre symptoms of the sleep disorder called narcolepsy.

"Cataplexy is characterized by muscle paralysis during cognitive awareness, but we didn't understand how this happened until now, said John Peever of the University of Toronto's Department of Cell & Systems Biology. "We have shown that the neuro-degeneration of the brain cells that synthesize the chemical hypocretin causes the noradrenaline system to malfunction. When the norandrenaline system stops working properly, it fails to keep the motor and cognitive systems coupled. This results in cataplexy – the muscles fall asleep but the brain stays awake."

Peever and Christian Burgess, also of Cell & Systems Biology used hypocretin-knockout mice (mice that experience cataplexy), to demonstate that a dysfunctional relationship between the noradrenaline system and the hypocretin-producing system is behind cataplexy. The research was recently published in the journal Current Biology in September.

The scientists first established that mice experienced sudden loss of muscle tone during cataplectic episodes. They then administered drugs to systematically inhibit or activate a particular subset of adrenergic receptors, the targets of noradrenaline. They were able to reduce the incidence of cataplexy by 90 per cent by activating noradrenaline receptors. In contrast, they found that inhibiting the same receptors increased the incidence of cataplexy by 92 per cent. Their next step was to successfully link how these changes affect the brain cells that directly control muscles.

They found that noradrenaline is responsible for keeping the brain cells (motoneurons) and muscles active. But during cataplexy when muscle tone falls, noradrenaline levels disappear. This forces the muscle to relax and causes paralysis during cataplexy. Peever and Burgess found that restoring noradrenaline pre-empted cataplexy, confirming that the noradrenaline system plays a key role.

CONTACT:

John Peever
Cell & Systems Biology
University of Toronto
Tel: 416-946-5564
Mobile: 647-207-7920
John.peever@utoronto.ca
Kim Luke
Communications, Faculty of Arts & Science
University of Toronto
416-978-4352
Kim.luke@utoronto.ca

Kim Luke | EurekAlert!
Further information:
http://www.utoronto.ca

Further reports about: body's muscles brain cell cell death sleep disorder synthetic biology

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>