Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Shed New Light on Behavior of Shark “Tweens” and “Teenagers”

26.08.2009
A long-term field and DNA study by the Institute for Ocean Conservation Science at Stony Brook University, University of Miami, Field Museum of Chicago and others has shown that young lemon sharks born at the Bimini islands, Bahamas, tend to stay near their coastal birthplace for many years.

While shark research and conservation typically focuses on baby sharks confined to shallow habitats, or ocean-roaming adults, less is known about these intermediate-aged animals, which are the breeders of tomorrow and are roughly similar in development to human ‘tweens’ and teenagers.

Tropical island-nations that sacrifice their nursery habitats to coastal development are therefore likely to lose not only babies but also much older sharks from their local areas, with potentially dire effects on the surrounding ecosystem. The study, conducted over a 14-year period at the Bimini Biological Field Station, is the cover article in the August issue of Molecular Ecology, a leading international scientific journal.

“It takes some sharks more than a decade to reach reproductive age, so we set out to better understand the phase of their development from when they are a couple of years old until they are on the verge of sexual maturity,” said lead author Dr. Demian Chapman, shark scientist with the Institute for Ocean Conservation Science at Stony Brook University (SBU) in New York, and an assistant professor at SBU. “We were very surprised to see that many lemon sharks lingered for years around the island where they were born -- often more than half of their development to adulthood.”

Fear of deep water−and the bigger predators that live there− combined with abundant prey in the mangroves around Bimini probably keeps these island-born sharks in safer waters near home for several years after their birth. “This means that using marine reserves and other local conservation measures may help protect sharks born around tropical islands for much longer than we thought,” Dr. Chapman explained. He suspects that future research could show that these stay-at-home behavior patterns are common among many shark species that live and breed around tropical islands. “If island communities develop all of their shark nursery habitats, like mangroves, or overfish baby sharks in local waters, then they will subsequently lose a big chunk of the older sharks as well,” he said.

Love them or not, sharks are essential to healthy oceans. Removing these top-level ocean predators will disrupt the local food web and cause negative consequences for other species and the ecosystem at large. Moreover, many tropical islands generate substantial revenue from shark-dive tourism, which this new research suggests will be heavily reliant on sharks born in local nursery areas.

During the course of the Bimini study, from 1995 to 2007, over 1,700 immature lemon sharks were caught, tagged and released. The implanted tags, plus subsequent recaptures and DNA analysis, showed that more than half of the 3- to 7-year-old sharks caught off Bimini were born locally and had lingered near their birthplace for years. Full results are described in the study, entitled, Long-term natal site-fidelity by immature lemon sharks (Negaprion brevirostris) at a subtropical island.

“In general, the survival of these intermediate-aged sharks is critical for sustaining shark populations,” said study co-author Dr. Samuel Gruber, Professor at the University of Miami’s Rosenstiel School of Marine and Atmospheric Science and Director of the Bimini Biological Field Station, who has been leading the overall lemon shark research program at Bimini since 1978. “Our study suggests that local conservation efforts can help many lemon sharks born at islands like Bimini survive through roughly half of their development to adulthood. Broader scale, sometimes international, management is needed to protect them after they’ve left their birthplace as adolescents and adults.”

Detailed information on how sharks disperse from their birthplace could be very useful for conservation efforts throughout the tropics, given that many tropical shark species are threatened by overexploitation to supply the trade for shark fin soup, for which demand is especially high in Asia. Between 22 and 73 million sharks are killed each year to supply the fin trade, and international management agencies are scrambling for solutions to stem severe shark population declines.

“Our study suggests that many tropical island nations may not have to wait for complex international shark regulations to be established in order to act,” said Dr. Chapman. “Their local management efforts could give immature sharks a chance to grow up in relative safety until they are big and ‘bad’ enough to roam deeper habitats far from home, where broader scale protection becomes more important.”

The research team is now extending its study to answer one of the great mysteries of shark biology: do sharks home back to their birthplace as adults? Co-author Dr. Kevin Feldheim of the Field Museum in Chicago, who led the genetics part of the study, said: “This research showed that most of the young sharks left the island by the time they were mature. Now we want to find out if they end up coming back to the place where they were born to breed, much like salmon and sea turtles do.”

The Institute for Ocean Conservation Science (IOCS) conducts scientific research about critical threats to oceans and their inhabitants, providing the foundation for smarter conservation policy. The Institute is a major research program of Stony Brook University’s School of Marine and Atmospheric Sciences and was founded as the Pew Institute for Ocean Science in 2003. For more information on IOCS, go to www.oceanconservationscience.org and www.somas.stonybrook.edu.

Kathryn Cervino | Newswise Science News
Further information:
http://www.somas.stonybrook.edu
http://www.oceanconservationscience.org

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>