Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists at Scripps Research Develop Novel Technology to Identify Biomarkers for Ulcerative Colitis

04.10.2012
Scientists from the Florida campus of The Scripps Research Institute have developed a novel technology that can identify, in animal models, potential biomarkers of ulcerative colitis, a type of inflammatory bowel disease that affects the lining of the colon.
The study was published October 3, 2012, in the Journal of the American Chemical Society.

The new research focuses on the protein arginine deiminases (PAD), which have been implicated in a number of diseases, including cancer, multiple sclerosis and rheumatoid arthritis. PADs participate in reactions in the body that form the amino acid citrulline in proteins through a process known as citrullination. This modification can have significant effects on the structure and function of the modified proteins.

While abnormally high PAD activity is present in a host of human diseases, the exact role of citrullination in these diseases remains unknown, largely due to the lack of readily available chemical probes to study it.

¡°We have developed technology to identify biomarkers for a variety of diseases in which you see abnormal PAD activity,¡± said Paul Thompson, an associate professor in the Department of Chemistry at Scripps Research, who led the study. ¡°This identification of potential biomarkers in animal models of ulcerative colitis is really the first step in a much larger effort. We want to push forward into rheumatoid arthritis and cancer to look for different diagnostic markers in these disease situations.¡±

In the new study, the scientists describe a chemical probe called rhodamine©phenylglyoxal (Rh©PG), which tags citrulline-containing proteins with a fluorescent imaging compound.

According to Thompson, the next step will be to produce further generations of this chemical probe to isolate the biomarker proteins and determine their sites of modification, as well as to quantify the extent of the citrullination.

The first author of the study, ¡°Seeing Citrulline: Development of a Phenylglyoxal©Based Probe to Visualize Protein Citrullination,¡± is Kevin L. Bicker of Scripps Research. Other authors include Venkataraman Subramanian of Scripps Research and Alexander A. Chumanevich and Lorne J. Hofseth of the University of South Carolina. For more information, see http://pubs.acs.org/doi/abs/10.1021/ja308871v

The study was supported by the National Institutes of Health (grants GM079357 and CA151304) and Scripps Research.

About The Scripps Research Institute

The Scripps Research Institute is one of the world's largest independent, not-for-profit organizations focusing on research in the biomedical sciences. Over the past decades, Scripps Research has developed a lengthy track record of major contributions to science and health, including laying the foundation for new treatments for cancer, rheumatoid arthritis, hemophilia, and other diseases. The institute employs about 3,000 people on its campuses in La Jolla, CA, and Jupiter, FL, where its renowned scientists¡ªincluding three Nobel laureates¡ªwork toward their next discoveries. The institute's graduate program, which awards Ph.D. degrees in biology and chemistry, ranks among the top ten of its kind in the nation. For more information, see www.scripps.edu.
For information:
Office of Communications
Tel: 858-784-8134
Fax: 858-784-8136
press@scripps.edu

Eric Sauter | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>