Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal underpinnings of drought tolerance in plants

12.06.2015

Genome-wide analysis elucidates drought-tolerance system in Arabidopsis

Regions all over the globe are suffering from severe drought, which threatens crop production worldwide. This is especially worrisome given the need to increase, not just maintain, crop yields to feed the increasing global population.


Arabidopsis seedlings after recovery from drought stress. Wild type on left, nac016 mutants on right.

Courtesy of Nam-Chon Paek

Over the course of evolution, plants have developed mechanisms to adapt to periods of inadequate water, and as any gardener can tell you, some species are better able to handle drought than others.

Accordingly, scientists have invested much effort to understand how plants respond to drought stress and what can be done to increase the drought tolerance of economically important plants. As Dr. Nam-Chon Paek of Seoul National University in Korea stated, 'We all expect that drought will be the major challenge for crop production in the near future.

Understanding drought-responsive signaling and the molecular and biochemical mechanisms of drought tolerance in model plants such as Arabidopsis and rice provide new insight into how to develop drought-tolerant crop plants through conventional breeding or biotechnological approaches.'

Arabidopsis thaliana was the first plant to have its genome sequenced. Paek is the senior author of a paper to be published this week in The Plant Cell that takes advantage of the genetic resources in this model species to reveal important underpinnings of drought responses in plants.

Paek's research group analyzed plants mutated in a regulatory gene called NAC016 and found that the nac016 mutant plants were more resistant to drought. The researchers set out to understand how this drought tolerance came about by comparing the set of expressed genes (the transcriptome) in the mutants to that in normal (so-called wild-type) plants.

According to Paek, 'Genome-wide transcriptome analysis using drought-tolerant or -susceptible variants is a promising method to reach the goal of understanding drought tolerance'. In this case, the scientists discovered that NAC016 is part of a mechanism to turn off responses to drought.

This is important because in the wild, plants likely evolved to keep the drought-response pathways inactive until needed so that they could save the energy the responses would require. For agricultural purposes, though, the ability to control when the pathway is on would be a great boon to developing drought-tolerant crops.

###

Contact author:

Dr. Nancy R. Hofmann
nhofmann@aspb.org
575-571-8926
The Plant Cell
http://orcid.org/0000-0001-9504-1152

Media Contact

Tyrone Spady
tspady@aspb.org
301-251-0560 x121

 @ASPB

http://www.aspb.org 

Tyrone Spady | EurekAlert!

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>