Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal how natural antibiotic kills tuberculosis bacterium

17.09.2012
A natural product secreted by a soil bacterium shows promise as a new drug to treat tuberculosis report scientists in a new study published in EMBO Molecular Medicine.
A team of scientists working in Switzerland has shown how pyridomycin, a natural antibiotic produced by the bacterium Dactylosporangium fulvum, works. This promising drug candidate is active against many of the drug-resistant types of the tuberculosis bacterium that no longer respond to treatment with the front-line drug isoniazid.

“Nature and evolution have equipped some bacteria with potent defense mechanisms to protect them against other bugs that share their habitat. Screening natural products generated by these organisms is therefore a powerful way to find possible new drugs to fight infectious diseases,” said Stewart Cole, lead author of the study, EMBO Member and a professor at the École Polytechnique Fédérale de Lausanne (EPFL), Switzerland. “Using this approach we have shown that nature’s antibiotic pyridomycin is a very selective killer of Mycobacterium tuberculosis, the bacterium responsible for tuberculosis in humans. It is also active against mycobacteria that have developed resistance to front-line drug treatments such as isoniazid.”

Tuberculosis causes up to two million deaths annually. There is a significant need for new drugs since the effectiveness of current antibiotics is compromised by the increasing prevalence of drug-resistant tuberculosis. The most effective drugs used to treat tuberculosis, for example isoniazid and rifampicin, are often no longer effective.

The researchers identified a protein, the enzyme NADH-dependent enoyl(acyl carrier protein) reductase or InhA, which is the principal target for the antibiotic. “By selecting and isolating M. tuberculosis mutants resistant to pyridomycin and sequencing their genome we have found that a single gene named inhA is responsible for resistance to this natural product,” added Cole.

The gene inhA is needed to produce the InhA protein, which is already known as a target for tuberculosis drug isoniazid. It turns out that pyridomycin can bind to the same pocket on the InhA enzyme as isoniazid but at a different site and in a way that involves a different sequence of molecular events. It is these differences that give pyridomycin the ability to overcome drug-resistant strains of mycobacteria.

The scientists showed that in live bacteria treatment with pyridomycin leads to the depletion of mycolic acids, fatty acids that are an essential component of the bacterial cell wall.

“Our finding that pyridomycin kills Mycobacterium tuberculosis by inhibiting InhA, even in clinically isolated bacteria that are resistant to the drug isoniazid, provides a great opportunity to develop pyridomycin or a related agent for the treatment of drug-resistant tuberculosis,” remarked Cole.

Towards a new tuberculosis drug: Pyridomycin – Nature’s isoniazid

Ruben C Hartkoorn, Claudia Sala, João Neres, Florence Pojer, Sophie J. Magnet, Raju Mukherjee, Swapna Uplekar, Stefanie Boy-Röttger, Karl-Heinz Altmann, Stewart T. Cole

Read the paper:
http://onlinelibrary.wiley.com/doi/10.1002/emmm.201201689/abstract
doi: 10.1002/emmm.201201689
Read more about Dr. Cole’s research:
http://actu.epfl.ch/news/old-news-is-good-news-for-tb-drug-discovery/
Further information on EMBO Molecular Medicine is available at www.embomolmed.org

Media Contacts
Barry Whyte
Head | Public Relations and Communications

Yvonne Kaul
Communications Offer
Tel: +49 6221 8891 108/111
communications@embo.org

About EMBO
EMBO stands for excellence in the life sciences. The organization enables the best science by supporting talented researchers, stimulating scientific exchange and advancing policies for a world-class European research environment.

EMBO is an organization of 1500 leading life scientist members that fosters new generations of researchers to produce world-class scientific results. EMBO helps young scientists to advance their research, promote their international reputations and ensure their mobility. Courses, workshops, conferences and scientific journals disseminate the latest research and offer training in cutting-edge techniques to maintain high standards of excellence in research practice. EMBO helps to shape science and research policy by seeking input and feedback from our community and by following closely the trends in science in Europe.

Yvonne Kaul | EMBO
Further information:
http://www.embo.org
http://www.embo.org/news-a-media-centre/press-releases/research-news.html

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>