Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Reveal Molecular Sculptor of Memories

27.09.2011
Researchers working with adult mice have discovered that learning and memory were profoundly affected when they altered the amounts of a certain protein in specific parts of the mammals’ brains.

The protein, called kibra, was linked in previous studies in humans to memory and protection against late-onset Alzheimer’s disease. The new work in mice, reported in the Sept. 22 issue of Neuron, shows that kibra is an essential part of a complex of proteins that control the sculpting of brain circuitry, a process that encodes memory.

“There are populations of humans who are slightly smarter and have better memory recall than others, and these traits have been mapped to the gene that codes for the kibra protein” says Richard L. Huganir, Ph.D., professor and director of the Solomon H. Snyder Department of Neuroscience at the Johns Hopkins University School of Medicine, and a Howard Hughes Medical Institute investigator. “Our studies in mice show that this same gene is involved in the operation of synapses, through which neurons communicate, and in brain plasticity, suggesting that’s what its role might be in humans too.”

In their lab, Huganir and neuroscience graduate student Lauren Makuch isolated kibra from mouse brain cells and confirmed by standard biochemical tests that it interacted with a neurotransmitter receptor in the brain known as the AMPA receptor.

They then determined that kibra regulated the delivery of AMPA receptors from inside the brain’s nerve cells out to the synapses by first growing live brain cells from embryonic mice in a dish for two weeks and then genetically altering some of those cells to produce less kibra protein. Next, they placed the live neurons in an imaging chamber and recorded the activity of the AMPA receptors once a minute for 60 minutes. Results showed that AMPA receptors moved faster in the cells with less kibra than in control cells with normal amounts of the protein demonstrating that kibra regulates how receptors are delivered to the surface of brain cells.

The work affirms that the addition of AMPA receptors to synapses serves to strengthen connections in the brain, Huganir says, noting that most forms of learning involve the strengthening of some synapses and the weakening of others, a phenomenon known as plasticity, which is responsible for sculpting circuits in the brain that encode memory. Without kibra, this process doesn’t function properly; as a result, learning and memory are compromised. Huganir hypothesizes that kibra specifically helps create a pool of receptors that is used to add receptors to synapses during learning.

Later in their study, using slices of brain from mice with or without kibra, postdoctoral fellow Lenora Volk recorded and measured electrical activity and synaptic plasticity in nerve cells, noting that mice lacking kibra showed less plasticity, a phenomenon that translates into a reduced ability to learn and recall new information, Makuch explains.

Finally, the Hopkins researchers conducted a series of behavioral studies using adult mice to compare the learning and memory of normal mice with those that made much less kibra protein. They used a well-established fear-conditioning task by placing the mice in a training chamber and exposing them to a tone and subsequent shock. After two days of training, the animals’ rates of “freezing” in place — a normal rodent response to fear — were measured. Kibra-deficient mice took longer to learn to associate the tone with the shock than it did the others. On day three of the experiment, upon simply being placed back into the training chamber, the normal mice had a high rate of freezing, while the kibra-deficient mice had a very low rate, indicating impairments in contextual fear response and therefore, memory.

“Our work in the mammalian brain shows that kibra, required for normal brain function and associated with learning and memory, is important for regulating the trafficking of AMPA receptors,” Huganir says. “In addition, as kibra has been associated with protection against early onset Alzheimer’s disease, these studies may help define novel therapeutic targets for the treatment of age-related memory disorders.”

This study was funded by the National Institutes of Health and the Howard Hughes Medical Institute.

Authors on the paper, in addition to Huganir, Makuch and Volk are Victor Anggono, Richard C. Johnson, and Yilin Yu, all of Johns Hopkins.

Other authors are Kerstin Duning and Joachim Kremerskothen, University Hospital Münster, Germany; Jun Xia, The Hong Kong University of Science and Technology, China; and Kogo Takamiya, University of Miyazaki, Japan.

On the Web:
Richard L. Huganir: http://neuroscience.jhu.edu/RichardHuganir.php
Neuron: http://www.cell.com/neuron/

Maryalice Yakutchik | Newswise Science News
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>