Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists reveal changes to embryonic stem cells caused by Down syndrome

08.09.2008
Scientists investigating the mechanisms of Down Syndrome (DS) have revealed the earliest developmental changes in embryonic stem cells caused by an extra copy of human chromosome 21 – the aberrant inheritance of which results in the condition. Their study is published online today (Thursday 4 September) in the American Journal of Human Genetics.

Lead by Dean Nizetic, Professor of Cellular and Molecular Biology at Barts and The London School of Medicine and Dentistry, the team utilised embryonic stem cells from a previously genetically engineered species of mice carrying a copy of human chromosome 21.

They discovered that extra chromosome 21 - a genetic state known as trisomy 21 - disturbs a key regulating gene called NRSF or REST, which in turn disturbs the cascade of other genes that control normal development at the embryonic stem cell stage. Furthermore, they identified one gene (DYRK1A) on human chromosome 21, whose overdose in trisomy (DS) is responsible for the observed effects.

Down Syndrome belongs to the group of conditions called 'aneuploidies', defined by an abnormal loss or gain of genetic material, i.e. fragments of chromosomes or whole chromosomes. Aneuploidies cause congenital anomalies that are a prime cause of infant death in Europe and the USA, and are currently on the increase with advancing maternal age in European countries. The number of people with DS in Europe exceeds half a million. The condition is more common than muscular dystrophy and cystic fibrosis, but the development of new therapeutic concepts is hindered by the fact that unlike muscular dystrophy and cystic fibrosis, where a single mutated gene causing the disease is known, the entire human chromosome 21 (containing around 300 genes) still has to be dissected into individual gene-dose contributions to the DS symptoms.

... more about:
»Chromosome »Embryonic »Genetic »Stem

Professor Nizetic, calling for further research into the components of the disturbed cascade he and his team have revealed said; "We hope that further research might lead to clues for the design of new therapeutic approaches tackling developmental delay, mental retardation, ageing and regeneration of brain cells, and Alzheimer's disease. In other words, we hope our work will open new routes to tackle the genetics of these health disorders, approaching them from the "back entrance", as dominant component-symptoms of Down Syndrome."

Alex Fernandes | EurekAlert!
Further information:
http://www.qmul.ac.uk

Further reports about: Chromosome Embryonic Genetic Stem

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>